Mordell–Weil and the Global Gauge Group of F-theory

based on arXiv:1706.08521

with Mirjam Cvetič

Ling Lin

Department of Physics and Astronomy University of Pennsylvania

Gong-Show, String-Math, Sendai June 18, 2018

Geometry/Physics dictionary of F-theory

F-theory geometrizes 7-brane gauge dynamics in non-perturbative type IIB compactifications. Physics is encoded in fiber singularities of elliptic fibration X.

By now: well-established correspondence between geometry and physics. E.g.: non-abelian gauge algebra \longleftrightarrow ADE fibers (codim. 1), massless matter \longleftrightarrow codim. 2 singular fibers,

Significance of the Mordell-Weil group

- Rank n MW(X) \longleftrightarrow $\mathfrak{u}(1)^{\oplus n}$ abelian gauge symmetry ([Morrison/Vafa, '96], [Morrison/Park, '02])
- Shioda homomorphism $\varphi: \mathsf{MW}(X) \to \mathsf{NS}(X) \implies \varphi(\sigma)$ dual to $\mathfrak{u}(1)$ gauge field. φ splits isomorphism $\mathsf{MW}(X) \cong \mathsf{NS}(X)/\mathcal{T}$, where $\mathcal{T} = \mathsf{zero}$ section + fibral divisor.
- Intersection theory on $X \longrightarrow$ precise form of φ restricts allowed $\mathfrak{u}(1)$ charge for non-abelian matter representations.
 - ⇒ non-trivial global structure of gauge group.

Extension of analysis for torsional sections ([Mayrhofer et al, '14])

Example:

$$G_{\text{glob}} = SU(4) \times U(1)$$

$$G_{\text{glob}} = \frac{SU(4) \times U(1)}{\mathbb{Z}_4}$$

$$G_{\text{glob}} = \frac{SU(4) \times U(1)}{\mathbb{Z}_2}$$

Physical implications

- Model building: F-theory models with Standard Model gauge symmetry ([LL & Weigand, '14], [Cvetič et al, '15]) 'naturally' realizes full gauge group $[SU(3) \times SU(2) \times U(1)_Y]/\mathbb{Z}_6$. \longrightarrow What about spectrum of line operators?
- Charge constraint is stronger than other consistency conditions (anomaly cancellation, charge minimality) => can be used to rule out supergravity models in the 'swampland'.
 - ---- Possible connection to weak gravity conjecture?

Physical implications

- Model building: F-theory models with Standard Model gauge symmetry ([LL & Weigand, '14], [Cvetič et al, '15]) 'naturally' realizes full gauge group $[SU(3) \times SU(2) \times U(1)_Y]/\mathbb{Z}_6$. \longrightarrow What about spectrum of line operators?
- Charge constraint is stronger than other consistency conditions (anomaly cancellation, charge minimality) \Longrightarrow can be used to rule out supergravity models in the 'swampland'.

---- Possible connection to weak gravity conjecture?

Thank you for your attention!