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Motivation

F-Theory » Elliptic fibrations
/ » Geometrically engineered

M-Theory oy gauge theories
’ » Captures global aspect of
CY, y the gauge theory

6d 4 = (1,0) Theory

» Base-free set-up

A 4

5d A4 =1 Theory



Elliptic Fibrations and Gauge Theories

> (Semi-simple) Lie group G, Lie algebra g, Representation R
» Dictionary between the elliptic fibration and the gauge theory

Elliptic Fibration Gauge Theory

Codimension 1 singularity Gauge algebra (9)
Codimension 2 singularity Representation (R))
Crepant resolution Coulomb phase
Flop Phase transition
Triple intersection polynomial 5d prepotential
Mordell-Weil group The fundamental group of the gauge group (7, (G))




Main Questions

» How the Mordell-Weil group of the elliptic fibration affect these
supergravity theories?
= What is the effect on the Coulomb branch of a 5d gauge theory when a semi-
simple group is quotiented by a subgroup of its center?

= What happens to the extended Mori cone of an elliptically-fibered Calabi-Yau
threefold when the Mordell-Weil group is purely torsion?

= Moreover, what are the 6d uplift of such theories (if any)?



Algorithm to get geometric data

Step 1. Determine a singular Weierstrass model with Kodaira fibers associated to the desired Lie group G.

Step 2. Determine a crepant resolution of the singular Weierstrass model.

Step 3. Compute the pushforward formulas to push the total Chern class of the resolved elliptic fibration
to its base.
» The generating function of Euler characteristics is computed.
» For a d-dimensional base, the Euler characteristic is given by the coefficient of t¢ in a power series expansion.
» Compute the Euler characteristics for Calabi-Yau threefolds.

Step 4. Compute the Hodge numbers using the fact that the base is a rational surface and Shioda-Tate-
Wazir theorem.

Step 5. Determine the fiber structure of the resolved Weierstrass Model.

Step 6. Compute the geometric weights of the irreducible components of the singular fibers over
codimension-two points.

Step 7. Compute the triple intersection polynomial.




Semi-simple Group with MW Torsion

» Consider two non-trivial models of semi-simple Lie algebra with MW group Z»
that corresponds to the collision of the Kodaira fibers of type I,"+l,,.

G =SU(2)xSU(4) G =SU(2)xSp(4)
T (G) = Zg X Zy m(G) = Zo X Zo
Three possibilities for embedding Zs:  (Zs,1), (1,7Z2) diagonal Zs
Possible quotient groups: Possible quotient groups:
SO(3)x SU(4), SU(2)xSO(5), (SU(2)xSU(4))/ Z SO(3)x Sp(4), SU(2)xSO(6), (SU(2)xSp(4))/ Zs
Their centers:  Za, Zig X ZLig, Zig Their centers:  Zo

Bi-fundamental representation is only compatible | Bi-fundamental representation is only compatible

with: (SU(2)xSU(4))/ Zs with: (SU(2)xSp(4))/ Zs




| Models | Algebraic data | # Flops | / G :SU(Q) XSU(4) \

F = y*2 - (2° + agz*z + st’zz®)

5413 | A =s%t%(a2 - 4st?) 3
MW =7Z, | G=(SU(2) x Sp(4))/Z»
R=(3,1)®(1,10)®(2,4)® (1,5)

x = -4(9K? + 8K - T + 3T?)
F = y°z - (2° + agx®z + Ayst’zz? + gs*t*2°)

B+E A= 32t4(4agi’z’6 - a%’d’i - 18aqa4agst® + élagst2 +2 a632t4) 3
MW = {1} | G =SU(2) x Sp(4)

R=(3,1)o(1,10)® (2,4)® (1,5) @ (2,1) ® (1,4)
x =-2(30K2 + 15K - S + 30K - T + 352 + 85 - T + 10T?)
F = y*2 + a1zyz — (2° + Totz*z + st°zz?)

I5+15 | A = 5% (af + 8adast + 16a5t° - 645t) 12
MW =Z, | G=(SU(2)xSU(4))/Z,
R=(3,1)®(1,15)®(2,4)® (2,4) & (1,6)

x =-12(3K*+3K -T +T?)

F= yzz +a1ryz - (.1:3 +otx’z + Aystix2? +'d'632t4z3)
I+ | A=s%*(a] +8addot + 16a5t> - 64st?) 20

MW = {1} | G=SU(2) xSU(4)

R=(3,1)e(1,15)0(2,4)®(2,4) e (1,6)®(2,1)® (1,4)®(1,4)

x=-2(30K?+15K - S +32K -T + 35 + 85 - T + 10T?)

G =SU(2)xSp(4) G =(SU(2)xSp(4))/ Zs
O———O——0O
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Matter content for each model

F-theory on Y M-theory on Y | F-theory on Y x S
! ! !
6d N = (1,0) sugra 5d N =1 sugra | 5d N =1 sugra
n = hUI(Y) -hM(B) -1 | nl) =n +np+1=hbY(Y)-1
n =h4 (V) +1 nd =h31(Y)+1
nr = h''(B) -1
G Adjoint Bifundamental (Traceless) Antisymmetric, Fundamental
(SU(?) X Sp(4))/ZQ 8.1 =98 M 10=9T | B4 = ST nys =9y = 1+ %T - V(ag)
Ns1=0s Niw=g7 | Rag=9-T nis=gr-1+5;T-V(a2)
SU(2) x Sp(4) ng1=S5-V(bs), n14=T-V(bs)

(SU(2) xSU(4))/Zy | n31=9s m115=9r | n2a+naz=S-T | n1g=T-V(ay)
ng1=9s n115=97 | n2a+ngi=S-T |me=T V(a1) B
SU(2) x SU(4) i =5 V(0 mi A =T W00




Charged hypers from triple intersection

polynomials

(G =(SU(2)xSU(4))/ Zs
ng1=2K+T)BK+2T)+1, ng4a=ng3=-T(2K+T),

nig=-KT, mni1i1s= %(I(T+ g i 2).

G =(SU(2)xSp(4))/ Z2

~

ngy=6L2-~TLT +2T%+1=gg, ngq=-2T(T-2L)=2(-4gy + T? +4),

nig = %(LT+T2) =—gr+T?+1, ni10= %(—LT+T2+2) =9r.

Comparing the triple intersection polynomial with the 5d prepotential completely fixed the number
\Of hypers charged in each irreducible representations when there is a Mordell-Weil group Z.

/

G =SU(2)xSU(4)
nia + ?’Ll,a = —ZT(4K + S+ QT), nz 4 + ’!?,2’:1 = ST,
ng 1 +8ng 1 = —QS(QK - S+ QT).

G =SU(2)xSp(4)
nia+ni10=—22KT + ST —4), nis+n110=1°"+1,
na1 + 8“3,1 = —28(2K - S + QT) + 8.

While for the cases with a trivial Mordell-Weil group, we are left with some linear relations.

~




Anomaly Cancellation

» Number of multiplets are given by: »{% =dimG, ny=hr"Y(B)-1=9-K?,
ng =niy+nr =h*N(Y)+1+ Y ng; (dim R; - dim R;m)

» Gravitational Anomalies are canceled when ngy — n%ﬁ” +29n7 — 273 = 0.

» For a semi-simple group with two simple components, G = G; + G5, the remainder of the
anomaly polynomial is given by

K2 1 2
Iy = —(tr R’ + g(xl‘z) + XY rR? - §(X§4’ + XY +4v3,
where Xéz) = (Aa,adj = ZnRi'aARi,a) trr, Ff, A
7

< Xé4) - (Ba,adj —~ ZnRi,aBRi,a) tre, F: + (Ca,adj - Z nRi,aCRi,a) (trp, F02)2’ >

1 1

. ¥y= ZnRi,aij,bA&,aARj,b trp, Fa2 trg, Fb2 -
> If the Ig factors, then the anomalies are all canceled by Green-Schwartz mechanism.

» We check that all the anomalies are canceled once all the number of hypers in each
representation are identified.



Thank you for listening! ©




