Tensor Network Formulations

from the view point of entanglement and RSRG

Tomotoshi Nishino (Kobe Univ.)

Realistic physical systems are normally entangled weakly.
This property enables us to apply RG transformation.
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Real Space Renormalization Group is of use!
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RG flow is accurately traced at criticality.

Fixed point is numerically captured.



from recent numerical results by means of Tensor Network

2D Ising Model: Transition temperature can be obtained with 8 digits.

3D Ising Model: obtained Tc = 4.511546 (Monte Carlo: 4.511544)
(T. Xiang et al: arXiv:1201.1144)

(Evenbly and Vidal: arXiv:1412.0732)

exact TRG(64) TRG+env(64) TEFR(64) TNR(24)

estimation of conformal c 0.5 0.49982 0.49988 0.49942  0.50001
. . o 0.125 0.12498  0.12498 0.12504  0.1250004
WelghtS for 2D Ising Model e 1 100055 100040  0.99996  1.00009
1.125 1.12615 1.12659 1.12256  1.12492

1.125 1.12635 1.12659 1.12403  1.12510

2 2.00243  2.00549 1.99922

2 200579  2.00557 1.99986

2 200750  2.00566 2.00006

2 2.01061 2.00567 2.00168

A Big Step In

Real-Space RG

of “poor-man’s SRG”.

X = 24 and 262,144 spins.

TABLE I. Exact values and numerical estimates of the central
charge ¢ and lowest scaling dimensions of the critical Ising
model. TRG results are obtained using the original Levin and
Nave’s algorithm [4]. TRG+env results are obtained using an
improved TRG method proposed in Ref. [5] under the name
TEFR results are taken from Ref.
[7]. The first three numerical columns use bond dimension
X = Dcutr = 64 and 1024 spins, while the TNR data uses



“Tensor” in tensor network formulation
* Elements are complex scalars. Bz’jké
* 1-leg (vector), 2-leg (matrix), 3-leg, 4-leg, .... -

* Not all of the legs are (purely) physical.

* Please forget about covariance and symmetries.

(occasionally there are symmetries, though.)

* Atensor may represent a certain area in the system.

Contraction among tensors Y B, A,
kYt

A.. V. W.
2; YT Y By Vi W X, Y,
ikl

* \WWe obtain a scalar or tensor, as a result.
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* Tensor legs are represented by lines.

* Connected lines represent contraction.
* Open lines correspond to remaining indices.

* Diagrams are more often used than equations.



Example: Tensors in Statistical Physics

* Consider the square-lattice Ising Model.

(We consider the diagonal lattice.)

* Black Dots: Ising spin variables.
, ], k, | are either 1 or -1.

* Boltzmann Weight for the shaded region:
i Qijkl = exp[ J(ij+]Kk+KI+IN/KT ]

| —<>7j ... this is already a 4-leg tensor.

* In case we consider models with continuous
local degrees of freedom, tensor legs are also
continuous.



an example of the Tensor Network

* Legs at the top of the diagram are *“alive”.
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* There are various interpretations on the network diagram.



2D Ising Model

* Partition function of the square
lattice Ising model with open
boundary conditions for both
sides and the bottom, and fixed
ones at the top.

* Tensor network 1s NOT new at all. It has been known for
more than 70 years.

1D Quantum Ising Model

* Through the quantum-classical correspondence
(= discrete Path Integral), the above diagram can
be interpreted as a quantum wave function.



Identified as a wave function
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* Look at the bottom of the diagram.

Matrix Product State (MPS)
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* Roman letters: physical indices
* Greek letters: auxiliary indices.

Matrix Product Operator (MPQO) ~ Transfer Matrix
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real/imaginary time evolution

f h i j k1 m
|
Y =TTTTT|®) now-
where T = exp(-iAtH)
or exp(-A TH)
Time evolution by MPO — «—
past: Initial MPS — —

Extended MPS

IT ISNOT EASY TO CONTRACT TENSORS!!

* Number of terms increases exponentially with respect to
the number of contracted bonds.

* Dimension of wave function increases exponentially
with respect to the size of the system.

* It is hopeless to handle Hilbert space directly.



From K-W approximation to TPS/PEPS

a Pioneering work: Kramers-Wannier Approx. Phys. Rev. 60, 263 (1941)

* Eigenvector of the transfer matrix of 2D Ising model is approximated by 2-state MPS.
* Tensor elements are adjusted so that variational partition function is maximized.

* One of the earliest example of “Numeircal Physics”.

Statistics of the Two-Dimensional Ferromagnet. Part II
H. A. Kravers, Universify of Leiden, Leiden, Holland
AND

(o H, WANNIER, Unidversely of Texas, Austan, Texar
(Received June 12, 1941)

The study of the Lwo-dimensional Ising model is continued. [ts specific heat at the Curie
point ie investigated, The quantity in question is computed for six successive finite matrix
problems and the conclusion is drawn that the specific heat 1s infinite at the Curic point, A new
closed form approximation of the partition function A is then developed by using the matrix
method in its variational form. The two power series for A at extreme temperatures are used as
a test for this and various other approximations, and it is found that the new result is a con-
siderable improvement over the existing solutions. Finally it is pointed out that these closed
form solutions support our conclusion as to the place and nature of the Curie point transition.




Kramers-Wannier Approximation Phys. Rev. 60, 263 (1941)

Estimate the partition function of 2D Ising model as Rayleigh
ratio for the transfer matrix with respect to a variational state
written in terms of matrix (= 2-leg tensor) product.

V(S1,S2,...,SN)=M(S1, S2) M( S2, S3) ..... M( SN-1,SN )
St S22 S3 G4 S5

holhelh ool ol o

Rayleigh Ratio X 3{3&!“ wi' (i )d (pi')

..l-li.,lh.
A= Max

S [E W) B W) ]

Maximize A adjusting M

*V iIs equivalent to 1D Ising model under external field.



Numerical Physics (by hand!)

During the calculation, one has to treat 6-leg Ising ladder, and to obtain the
maximal eigenvector of the transfer matrix. This was obtained by the
Power method, performed by hand.

TABLE 1. Values of eigenvectors.

VECTOR Ap VECTOR Ag VECTOR Ag
1.000000 1.000000 1.000000 - .094527
.249038 145548 137739 017936
.100846 098916 - .009995
VECTOR Ag .129}303 , .11%6?8 017578
.098804 097652  .010148
1.000000 - .019608 016676  .002709
186931 075422 071758  .008510
105677 .148388 114363 .022371
231108 096230 096454  .065628
~.020594 016343  .017673
VECTOR Ay .01100§ .01066% 008320
02361 01681 .022060
1~?282g2 070174 069010  .056461
103346 023648 016516  .022385
160827 066754 062185  .060217 h
Leos2T 218677 141720 216286 ... WNO
026148 C . .
079123 | did 1t?
.222893




Specific Heat

H. A. KRAMERS AND G. H. WANNIER Phys. Rev. 60, 263 (1941)
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K-W approximation and

exact solution L. Onsager, Phys. Rev. 65, 117 (1943)

.
Two ancestors of i i |
Exac¢t | ; |
modern analyses N
3 B "
: . K-W approx.
Note that difference \ | PP
In Free energy is 2|7~ =2 it ; ]
very small. J ﬁ; Error in Tc|~ 7%
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These two view points are unified later by Baxter.



K-W approx. applied to 3D Ising Model | (cond-mat/9909097)

1.0
0.8 |
0.6 | Spontaneous
M Magnetization
0.4
Plots: K-W approx.
0.2 Curve: from M.C.
0.0 ‘
0.2 0.3 0.4

K =J/KT

Fig. 2. The magnetization M as a function
of K. The solid line denotes MM in
Eq. (3-4) obtained from Monte Carlo sim-
ulations. 22°2%) In the vicinity of the calcu-

lated transition point, M is proportional to
K — K..

Variational state is 2D
Ising model under finite
external field.

The K-W approximation
works better in higher
dimensions.

(So far, no application in
3+1 dimensional system.)



Quantum Systems

... a Similar variational state was considered for 1D quantum
spin chains.

Nightingale and Bloete, Phys. Rev. B 33, 659 (1986)

As a variational form of the ground state for a given
quantum number S of the z component of the total spin, we
choose, again using the representation in which the s/ are
diagonal,

k
visy, ..., sp)=J1 A (s5.541)8 9)

i=1 S =y
St S22 S3 S4 S5
helholhehelhothet

This article is known as the numerical proof (?) of the existence
of the Haldane gap. (We return to this article again.)



Generalization by Baxter

Dimers on a Rectangular Lattice

Introduction of auxiliary variable

R. J. BAXTER

J. Math. Phys. 9, 650 (1968)

Research School of Physical Sciences, The Australian National University, Canberra, Australia

(Received 17 July 1967)

A set of matrix equations is derived which yields the statistical mechanical properties of a system of

. monomers and dimers on a rectangular lattice in the thermodynamic limit. As the matrices are strictly of

N umeric al | infinite dimensionality, the equations cannot be solved directly, but if they are restricted to be of finite
. and quite small dimensionality, very good approximations to the thermodynamic properties are obtained.

The calculations were performed on an IBM 360

computer using double-precision floating-point arith-
metic accurate to 16 decimal places. A relative error
for each of the 3r? equations, represented by (3.19)-
(3.21), was defined as the difference between the
right- and left-hand sides divided by the absolute sum
of all the additive terms in the equation (including
the individual additive contributions to the matrix
products). The iterations were assumed to have
converged only when the relative error for each
equation was less than 1071% At each iteration, the
values of « and p obtained from (3.12) and (3.24)
were evaluated and no change was observed in their
first ten significant figures during the last iteration.
It 1s therefore believed that the numerical values
obtained for these quantities are accurate to ten
significant figures.
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A set of matrix equations|is derived which yields the statistical mechanical properties of a system of
monomers and dimers on a rectangular lattice in the thermodynamic limit. As the matrices are strictly of
infinite dimensionality, the equations cannot be solved directly, but if they are restricted to be of finite
and quite small dimensionality, very good approximations to the thermodynamic properties are obtained.
J. Math. Phys. 9, 650 (1968)

Matrix Product (Variational) State

) k
P fghijkim = ZA&A(’;&A A 5A A CACn n

f g h i j k I m

ioci [3é iéieizini

Y
Greek letters represent D-state auxiliary variables.

The state 1s applied to the dimer model.



Column—to—Column Transfer Matrix RA#IA’;:’ = Z Gfﬁ’ Gﬁﬂ,
B

Extended C-T-C Transfer Matrix Sgiuizary = > Ko, o I B, 8" GflfGﬁ;‘a
B.B’

Variational Ratio I'=x'Vx/x'«x =Tr S”/Tr R”

>

... this is an origin of MPS in statistical mechanics .... (another one is by Derrida.)



Expectation values can be calculated easily

* Variational ratio can be calculated from left to right.

(@] A |®)

>
(@l@) ~

— (0 |H|®)

Density Matrix Renormalization Group (DMRG) implicitly uses this superiority.

f--m run from 1 to d,

Structure of MPS a-n run from 1 to D.
frog hig ok lm @) = N oy ke | fghighEm) (
baéﬁé?égé_ﬁézéﬁé o T\ 4(\‘4(\ o] 4""' A:t‘ 4‘} AA 41@ 'IAI’ ‘ fg.'kifkfﬂl)

It contains large number of variational parameters that can be tuned.



Baxter’ s numerical result on the dimer problem

K/s

s=1.0 s =40 s = 10.0 5§ = O

1.937416664 1.444670083 1.356095932 1.299038106
1.940215341 1.460590906 1.381143005 1.335033348
1.940215344 1.460623453 1.381458447 1.337338271
1.940215351 1.460629381 1.381506501 1.337984697
1.940215351 1.460629397 1.381508315 1.338250017
1.940215351 1.460629398 1.381508512 1.338380390

SN A P o B

Extrap-
olated 1.940215351 1.460629398 1.381508536 1.338506344

One finds a careful statement on his numerical result.

It is clearly not possible to deduce rigorously from
the above working whether or not the dimer system
undergoes a phase transition, but the fact that the
successive approximations vary smoothly with s and
tend towards the known results at both the high-
and low-density limits suggests very strongly that no
transition occurs in this system.

... can anyone here can be as careful as Baxter? Apparently, I cannot ...



Baxter’s Corner Transfer Matrix (CTM) method
has been used since then.

Square Lattice Variational Approximations Applied S.K. Tsang, J. Stat.
to the Ising Model Pays. 20 (1979) 95

S. K. Tsang*

Received September 5, 1978

The variational method developed by Baxter is applied to the zero-field
Ising model on the square lattice. The problem is simplified to that of
solving a relatively small system of nonlinear equations. The estimates to
the spontaneous magnetization and the critical temperature from the
sequence of variational approximations are obtained, The results converge
rapidly to the exact ones. They exhibit a ¢crossover phenomenon and satisfy
a scaling relation.

Equation (76) has been solved numerically for a range of values of z
below the critical point, using the Newton~Raphson method. The computa-
tion was done on a UNIVAC 1100/42 computer, using double-precision
floating point arithmetic with 18 significant digits. A solution was assumed
to have converged only when the relative change of each variable, through
one iteration, was less than 10-1% As a measure of the degree to which an
equation was satisfied, we also calculated the difference between the right-
and left-hand sides divided by the absolute sum of all the additive terms in
the equation, This was never greater than 10716,




Cross-over in Critical behavior of expectation values / observables
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Fig. 2. Log-log plot of spontancous magnetization vs. the temperature parameter = for
n =3, 6, 10, 20. The crossover can be seen easily even for quite small values of n.

Something important is
found several times.

Liu et. al, Phys. Rev.
B 82, 060410 R 2010

S.K. Tsang, J. Stat.
Pays. 20 (1979) 95
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FIG. 4. (Color online) Demonstration of asymptotic MPS mean-
field behavior and scaling crossover in one dimension. The
D-dependent critical fields are: h./J=1.0717967 (D=2), 1.0143343
(D=4), 1.0063523 (D=6), and 1.0021646 (D=10). The lines have
slopes B=1/8 and 1/2.



H | StO ry ... they put ancilla, and formed MPS ...

Exact MPS (of very large dimension)

Bethe Ansatz (1931), Onsager (1943)
----> Gaudin, Lieb, Mattis, Yang, Baxter, etc.....

MPS of small dimension (exact/approx.)

AKLT, Fannes, Zittartz, Derrida, etc.... (as we know quite well)

B. Derrida, M.R. Evans, V. Hakim, and V. Pasquier: J. Phys.
A Math. Gen. 26 (1993) 1493.

I. Affleck, T. Kennedy, E.H. Lieb, and H. Tasaki: Phys. Rev.
Lett. 59 (1987) 799.

M. Fannes, B. Nachtergale, and R.F. Werner: Europhys. Lett.
10 (1989) 633.

Nightingale and Bloete, Phys. Rev. B 33, 659 (1986)
den Nijs and Rommelse, Phys. Rev. B 40, 4709 (1989)



CTM method is related to Density Matrix (and entanglement)

Later in 1982, Baxter

states in his textbook, Note from (13.1.11) and (13.1.17) that a significant variable is
about the density matrix

o1 = Trace AgB,CyDy . (13.8.19)
The n eigenvalues of A;B,C;D, are contained in the 2n cigenvalues of
EXACTLY x*A,B,C,D,, and the largest of each is unity. Let
SOLVED MODELS
IN s}'.\'_l'Ls\l‘._(..sl. A = largest eigenvalue of k *A,B.CD,

el omitted from A B,C.D,. (13.8.20)
k,{.»\ I,)\TAY,J

NN T Then in some sense this A is a measure of the relative error in p; caused

by truncating the equations to finite n. Since (oy) is a derivative of In x and
from (13.1.17) is proportional to py, this suggests that

B . BAXTER

relative errorin k = 4. (13.8.21)

In 1986, Nightingale and Bloete stated in Phys. Rev. B 33, 659 (1986),

This method (*) was formulated by Baxter for classical models in
statistical mechanics. The generalization to quantum mechanical
systems is straightforward.

Density matrix renormalization group (DMRG) was established just 6 years later.
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... when i was living in Sendai ...



Ising model on (5, 4) lattice can be studied by CTMRG

(1andjare NN sites )

H=-J20oigj
The space is negatively curved b '. :
: .’/’f, ® A ,..
All the sites are equivalend "..- .
Vo ul 0.
This is also an example '~
of the Tensor Network N e/ '-_'
. :.o b W D
The lattice has recursive -~ h d :
nature, which enables us to \3
apply CTMRG. Jogge “"
".-“ Q O~..
It turned out that the phase ® . o0

transition Is mean-field like. IR P =



Structure
of the
Lattice
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Baxter considered higher dimensional generalization. (in his textbook 1982)

They can also be extended to three dimensions: one obvious way being
to write down the generalization of Fig. 13.9, which will involve a cube
sliced into 27 pieces by 6 cuts! Unfortunately the resulting equations are
quite complicated and involve ‘corner tensors’ with three indices. There
is no analogue of matrix diagonalization for these tensors, and as yet the
equations have not been investigated. '

This i1s nothing but the Tensor Product State, or PEPS
(cond-mat/0011103, 0101360, 0303376)

2
&

. Oij Gislj-l
Gij 10
e Vi WP (s
e 5 -1t
......... -t G114 s IP

(Two-dimensional extension of MPS)

http://quattro.phys.sci.kobe-u.ac.|p/nishi/NIDMRG2000.html




S
L . (cond-mat/0011103
Application to 3D Ising Model ﬂ@ﬂ 0101360
_ i K 0303376)
= Uniform Tensor i j
Network State

(or uniform PEPS)

A |RF type withm=1
Kc = 0.2188 (in 1999)
cond-mat0001083

® \ertex type with m=2
Kc = 0.2207 (in 2000)
cond-mat0011103

Applied to 3D Ising:
Precision in Tc
m = 2: 0.6%
m=3:0.3%

notshown: Vertex ypem= 3

Kc = 0.2210 (in 2003)
cond-mat303376

——— Monte Carlo
Kc = 0.2216544

y | - 1/T
2.0 2.5 3.0 3.5 40




In Quantum Physics

Y Two—dimensional tensor network was

proposed as an extension of the VBS state
of the AKLT model.

|. Affleck, T. Kennedy, E.H. Lieb, and H. Tasaki: Commun.Math. Phys. 115 (1988) 477

% Hieida applied 2D tensor network to the
deformed VBS state, and treat it
numerically by means of DMRG.

Y. Hielda, K. Okunishi and Y. Akutsu: New. J. Phys. 1 (1999) 7.1.

Y>>




MPS and Entanglement

tangle
entangle
disentangle

(distangle?!)

% Why MPS and TPS/PEPS are so accurate?

Singular Value Decomposition (SVD) is a key technique.



Singular Value Decomposition

* a linear decomposition for arbitrary matrix.
kK
Ay=> AUl
g

* ‘lambdas’ are the singular values, which are non-negative.

* U and V are orthogonal (or unitary) matrix, which satisfy the
orthogonal relations.

> UiUy=0z, > ViViy=0dg

i=1 i=1

* Normally, singular values decays rapidly, and tiny ones can be
omitted. This is one of the key point in the tensor network
formulation.



compression of an image
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Schmidt decomposition
of a quantum state

perform SVD ,

at the center  + (fghi)(jkim)

f g h i j kI m
| |

|| |
Cu )

— T T
=3 " e Ugranive Viinome
&

corresponding state L Ag [L U onive | fahi } [2: Viikem)e |jk::':"m)]

Linear Combination | S >left.

| g >right

Schmidt decomposition

k€t
Z Ul sgniye |F9hi)
foghi

Z Vi (')khn)& ljk'(f"!'r?,)
ikEm

\II> — Z }‘5 |£ >1eft. If >right



Entanglement
f 9 h i J k| m
| 1 | | £ A £ | 1 ]

(U r———(CV )

* When SVD is applied to the distribution P(fghijkim), dividing

the indices into fghi and jkim, the singular values represent
some sort of FREQUENCY of linear combinations of states.

* The von Neumann entropy

S = —; pe log p:= _; (1) log (1)

IS often called as the Entanglement Entropy, since it quantifies
the quantum entanglement, when a quantum state Is considered.

The terminology is also used in the field of statistical
mechanics.




Compression of information {7 ’ll Ii ]| Ilc |l m

A |
C U Yo V)

. ', _ T 7%k
Wave function and SVD % f 413y (iktrm) = Z )\g L(fqm;}g (jhktm)é

Approximation "("')fgh,ijls:f,’m Z /\E I/( F th)f ‘ ]k(’?ll)f

This process do not spoil the entanglement drastically.

original G _ » oo 1. — — % N e (AN

Entanglement Entropy XE: Pg 106 Pg ;( e) log (X¢)
X

after the compression Z pe log pe = — Z 10{5 /\C

£=1 £=1



How MPS is obtained?

perform SVD from the left ¥ rgpiikem Z Dfn [ Jh»ijkﬁ'ﬂl-)&'Aﬂ]

; — r 24 4 !
do SVD again. — ZL Viag)a [V(h,ijkﬁm)ﬁ)\ﬁ]
w3
fo9g h i j kI m 17 1 "
oo sty | = 2t Vlearp Ul [Vpem X,
a~ Py ToT e T o 3y

In this manner, one can transform an arbitrary state to MPS.
% We state only the possibility of expression by use of MPS.
* QGreek indices are restricted to x

% If the system is critical, one has to use larger x

Entanglement structure iIs a key point in TN formulation.



Renormalization Group picture

Diagram for a Tree
Tensor Network




Scale Invariant?
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Real Space Renormalization | (et

Circles are local degrees of freedom
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(a) Treat several spins as an effective spin. (Block Spin Transformation)
(b) Keep only relevant freedom. (Renormalization)

(c) Scale change, which is 1/2 in the above case. (Rescaling)

(d) Consider interaction among blocks. (RG flow)



Conventional RSRG: Conceptually good, but not Quantitative

T > Tc Interaction decreases with RG steps.(disordered)
T = Tc Interaction remains constant. (critical)
T < Tc Interaction increases with RG steps. (ordered)

% when interaction parameter K is slightly smaller

E o E o than its critical value

o o K=KC-5—>KC-)\5—>KC-)\25—>KC-)\36—>....
4 4 I\/I

: ° Z ° Suppose that when A 0 = C, the correlation becomes
o o local. Then correlation length ¢ can be obtained from

M M
o) o) 2 =¢ and AN 0=C

% Result
§:const.(Kc-K)_Y v=Ilog 2/logA

(o]
(o)

Reference: Kadanoff et al: Rev. Mod. Phys. 86 (2014) 647.

Block-spin transformations are chosen (partially) intuitively.



How to improve the situation?
% Choice of block spin transformation is not automatic.

% New site degrees of freedoms are identified as the block.

: : : J
Let us reconsider from tensor view point.  Q,;,, = exp [W ij +ik + 50 + M)‘
‘B

..,

(d=4) Il

I'—_ j=Jj

*Block touches only through their side
— those tensor legs that are on the
sides should be considered as the new
degrees of freedom.



Tensor Renormalization Group

k
RG steps: first, perform SVD for 3@1 z 6 c @

the local tensor. i j i j

Qreij = ZA Ukeye Viig e i
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It can be decomposed vertically
/ T/ /
Qreij = Z A¢Utkiye b (fJ)g ZF’“& €36
¢
Contract 4-tensors that are connected
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Repeat the above procedur
256

X
3 (3) (3 (3) (3
Qassr = D FianuGismn ~ 2_ FlamuCiomm

pu=1 u=1




There are several computational methods.
(TERG, HOTRG, TNR, Loop-TNR, etc.)

I’ JJ >>SVD >>

Kk’

What is common?

*Entanglement structure of the system is almost kept
*Focusing on bonds (links) other than sites.
*What is renormalized is not Hamiltonian but tensors.

*From the RG view point, it is curious to consider how the
renormalized Hamiltonian looks like when it is written by
equations, in particular when the system is critical.



Recent? numerical results by means of Tensor Network

2D Ising Model: Transition temperature can be obtained with 8 digits.
3D Ising Model: obtained Tc = 4.511546 (Monte Carlo: 4.511544)

(~ 24 states are kept) (T Xiang etal: arXiv:1201.1144)



dm | IStO ne Binary 1D MERA:

k=12, . xr
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Evenbly and Vidal f 2
arXiv:0707.1454 /
conventional MPS
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MERA, the multi-scale entanglement renormalization Ansatz,
which has been applied to 1D quantum systems. This tensor
network efficiently describes system at criticality.



Proplem of CDL Evenbly and Vidal

arXiv:1412.0732

Entanglement Structure in the Lattice models,

(a) i In particular at criticality.
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In TRG formulation, so called the Corner
Double Line (CDL) remains even after
the RG transformation. Since the original
degrees of freedom partially (?) remains,
the presence of CDL (drastically!) spoils
the numerical precision in RSRG.




a solution for CDL S Al

Solution: apply the
disentangler before
performing RG
transformation by isometry.

This scheme was first
Introduced in MERA, the
multi-scale entanglement
renormalization Ansatz,
applied to 1D quantum
systems.

Evenbly and Vidal
arXiv:0707.1454




TRG v.s. TNR
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numerical results by Tensor Network Renormalization

2D Ising Model: Transition temperature can be obtained with 8 digits.
3D Ising Model: obtained Tc = 4.511546 (Monte Carlo: 4.511544)

estimation of conformal

weights for 2D Ising Model ,A

A Big Step In

Real-Space RG

(T. Xiang et al: arXiv:1201.1144)

(Evenbly and Vidal: arXiv:1412.0732)

exact TRG(64) TRG+env(64) TEFR(64) TNR(24)
c 0.5 0.49982 0.49988 0.49942 0.50001
o 0.125 0.12498 0.12498 0.12504 0.1250004
e 1 1.00055 1.00040 0.99996  1.00009
1.125 1.12615 1.12659 1.12256 1.12492

1.125 1.12635 1.12659 1.12403  1.12510
2 2.00243 2.00549 - 1.99922

2 2.00579 2.00557 - 1.99986
2 2.00750 2.00566 - 2.00006
2 2.01061 2.00567 - 2.00168

‘.’ TABLE I. Exact values and numerical estimates of the central §
charge ¢ and lowest scaling dimensions of the critical Ising |
i, model. TRG results are obtained using the original Levin and 1
2 Nave’s algorithm [4]. TRG+env results are obtained using an b
¥ improved TRG method proposed in Ref. [5] under the name §
¢ of “poor-man’s SRG”. TEFR results are taken from Ref. ¥
b [7]. The first three numerical columns use bond dimension 3
' ¥ = D.ut = 64 and 1024 spins, while the TNR data uses §



(Evenbly and Vidal: arXiv:1412.0732) |

exact TRG(64) TRG+env(64) TEFR(64) TNR(24)
c 05 049982  0.49988 0.49942  0.50001
o 0.125 0.12498  0.12498 0.12504 0.1250004
e 1 100055  1.00040 0.99996  1.00009
1.125 1.12615  1.12659 1.12256  1.12492
1.125 1.12635  1.12659 1.12403  1.12510
2 200243 2.00549 - 1.99922

2 2.00579 2.00557 - 1.99986
2 2.00750 2.00566 - 2.00006
2 2.01061 2.00567 - 2.00168

§ TABLE I. Exact values and numerical estimates of the central i
g charge c and lowest scaling dimensions of the critical Ising |
I model. TRG results are obtained using the original Levin and 4
2 Nave’s algorithm [4]. TRG+env results are obtained using an ¥
improved TRG method proposed in Ref. [5] under the name §
¢ of “poor-man’s SRG”. TEFR results are taken from Ref. }
k [7]. The first three numerical columns use bond dimension 3}
! ¥ = Dcut = 64 and 1024 spins, while the TNR data uses $
¥ x = 24 and 262,144 spins.

not known ...

From the theoretical view point, it is curious to consider how
the renormalized Hamiltonian looks like when it is written by
equations, in particular when the system is critical.



Tensor Network Formulations

from the view point of entanglement and RSRG

. E b Tomotoshi Nishino (Kobe Univ.)




