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A	simple	combinatorial	problem	in	discrete	geometry	

1	

In	any	dimension,	take	a	collec5on	of	“rigid”	building	blocks	of	your	choice.		
Glue	them	together	in	every	possible	way.	
	



	
à  Can	we	count	the	resul5ng	discrete	

spaces	according	to	their	global	
curvature?	
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à  Can	we	count	the	resul5ng	discrete	

spaces	according	to	their	global	
curvature?	

	
à What	are	the	asympto5c	proper5es	

of	the	spaces	of	maximal	curvature?	
What	do	they	look	like	in	the	
con5nuum?	
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1	–	Curvature…?	
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1	–	Curvature…?	

Start	with	the	simplest	case:	triangula5ons	
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In	a	triangula5on,	suppose	that	all	edges	have	the	same	length		
	
à	“canonical	geometry”	(no5on	of	distance,	local	curvature…)	

1	–	Curvature…?	
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Local	curvature:	
	
Number	of	D-simplices	around		
(D-2)-simplices	

1	–	Curvature…?	
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Dimension	D=2	
	
Number	of	equilateral	triangles	around	
ver5ces	:	
	
•  posi5ve	local	

curvature	

•  locally	flat	

•  nega5ve	local		
curvature	

2⇡
�
1� N (v)
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Local	curvature:	
	
Number	of	D-simplices	around		
(D-2)-simplices	
	
	
	
Deficit	angle	in	dimension	2	

1	–	Curvature…?	
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à	Computed	from	the	number	of	(D-2)-simplices	and	D-simplices	(														and								)	
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Total	curvature:	
	
	
	
	
	

nDnD�2

Curv ⇠
X
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⇣
2⇡ � ↵ ND(vD�2)

⌘

⇠ 2⇡nD�2 � ↵
D(D + 1)

2
nD

1	–	Curvature…?	

↵ = arccos
1

D



à	Computed	from	the	number	of	(D-2)-simplices	and	D-simplices	(														and								)	
	
à	Maximize	the	curvature	at	fixed						 	 	Maximize														at	fixed		
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Total	curvature:	
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1	–	Curvature…?	
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Dimension	D=2:	Bigger	polygons???		
	
	
	
	
	

1	–	Curvature…?	
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Dimension	D=2:	Bigger	polygons???		
	
	
	
	
	

1	–	Curvature…?	

à	

A	possible	choice	(only	depends	on	
one	length)	
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Dimension	D=2:	Bigger	polygons???		
	
	
	
	
	

1	–	Curvature…?	

à	

A	possible	choice	(only	depends	on	
one	length)	

Other	possible	choice	which	works	in	what	follows:	1	choice	of	angle	for	each	polygon	
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Dimension	D:	Bigger	polygons???		
	
	
	
	
	

1	–	Curvature…?	

à	

A	possible	choice	(only	depends	on	
one	length):	SAME	

0 0



2	-	Discrete	quantum	gravity:	
	

Dynamical	triangula5ons	from	bigger	building	blocks…	



2	–	Discrete	quantum	gravity	

Einstein-Hilbert	par55on	func5on	for	Euclidean	pure	gravity	in	dimension	D	

Metric	

Cosmological	constant	

Ricci	scalar	curvature	

à	(Euclidean)	general	rela5vity	without	mafer	from	least	ac5on	principle	

F =

Z

M
D[g]e�

R
dDx

p
|g|(2⇤� 1

16⇡GR)

Newton’s	constant	

Manifold	
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2	–	Discrete	quantum	gravity	

F =

Z

M
D[g]e�

R
dDx

p
|g|(2⇤� 1

16⇡GR)
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•  Complicated	object	
•  Not	well	defined	

	

à	Try	to	make	sense	of	it	by	considering		
a	discrete	analog	

Einstein-Hilbert	par55on	func5on	for	Euclidean	pure	gravity	in	dimension	D	



F =

Z

M
D[g]e�

R
dDx

p
|g|(2⇤� 1

16⇡GR) !
X

T
connected

triangulation
of M

1

CT
e�Sdiscrete

Edges	all	have	same	length				
(canonical	geometry)	

l

2	–	Discrete	quantum	gravity	

l

(David,	Ambjorn,	Kazakov	and	many	more…	80’s)	 10	

Einstein-Hilbert	par55on	func5on	for	Euclidean	pure	gravity	in	dimension	D	



Allow	topology	fluctua5ons	at	microscopic	level	

1	–	Discrete	quantum	gravity	
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Einstein-Hilbert	par55on	func5on	for	Euclidean	pure	gravity	in	dimension	D	
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1	–	Discrete	quantum	gravity	
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Einstein-Hilbert	par55on	func5on	for	Euclidean	pure	gravity	in	dimension	D	

l

F =

Z

M
D[g]e�

R
dDx

p
|g|(2⇤� 1
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X

T
connected
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F =

Z

M
D[g]e�

R
dDx

p
|g|(2⇤� 1

16⇡GR) !
X

T
connected

triangulation

1

CT
e�DnD eD�2nD�2

1	–	Discrete	quantum	gravity	

l
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Einstein-Hilbert	par55on	func5on	for	Euclidean	pure	gravity	in	dimension	D	

(Regge)	
Sdiscrete ! D ⇥ nD(T )� D�2 ⇥ nD�2(T )

#	of	D-simplices	

#	of	(D-2)-simplices	
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1	–	Discrete	quantum	gravity	

l
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Einstein-Hilbert	par55on	func5on	for	Euclidean	pure	gravity	in	dimension	D	

(Regge)	
Sdiscrete ! D ⇥ nD(T )� D�2 ⇥ nD�2(T )

Curvature	 				number	of	(D-2)	and	D-simplices		

Z

M
dDx

p
|g|R / Curvature



1	–	Discrete	quantum	gravity	

l
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Einstein-Hilbert	par55on	func5on	for	Euclidean	pure	gravity	in	dimension	D	

(Regge)	
Sdiscrete ! D ⇥ nD(T )� D�2 ⇥ nD�2(T )

D�2 / 1

G
>> 1

F =

Z

M
D[g]e�

R
dDx

p
|g|(2⇤� 1

16⇡GR) !
X

T
connected

triangulation

1

CT
e�DnD eD�2nD�2



Quantum	gravity?	Analogy	with	thermodynamics…	
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Microscopic	descrip4on	of	gaz	 Microscopic	descrip4on	of	space-4me	

Accessible	state			 Triangula5on		

														par5cles	 																					D-simplices	

Thermodynamical	limit		 Con5nuum	limit	

Grand-canonical	par55on	func5on	 Discrete	Einstein-Hilbert	par55on	func5on	

Inverse	temperature	 Inverse	of	Newton	constant	

Chemical	poten5al		

Energy	

S ST

nD ! +1
l ! 0

X

states S

eµn(S) e��E(S)
X

ST
connected

triangulation

e�DnD(ST ) eD�2nD�2(ST )

� =
1

kBT
D�2 / 1

G

µ

E(S) �nD�2?

�D?

nD(ST )n(S)
n ! +1
Dist ! 0
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Quantum	gravity?	Analogy	with	thermodynamics…	
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nD ! +1
l ! 0

X

ST
connected

triangulation

e�DnD(ST ) eD�2nD�2(ST )

� =
1

kBT
D�2 / 1

G

µ

E(S) �nD�2?

�D?

Not	bounded	from	below…	

n ! +1
Dist ! 0

X

states S

eµn(S) e��E(S)



Microscopic	descrip4on	of	gaz	 Microscopic	descrip4on	of	space-4me	
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Quantum	gravity?	Analogy	with	thermodynamics…	
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nD ! +1
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2	–	Discrete	quantum	gravity	

Discrete	Einstein-Hilbert	par55on	func5on	
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� = eaD�2�D

N = e�� = eD�2

①  Large	N	limit		(Physical	limit	of	small	Newton	constant)		:		
	
											has	to	be	chosen	such	that																																					bounded	from	below	anD � nD�2a 		

F (�, N) =
X

connected
triangulations

1

C
�nD N�(anD�nD�2)



F (�, N) =
X

connected
triangulations

1

C
�nD N�(anD�nD�2)

		

2	–	Discrete	quantum	gravity	

Discrete	Einstein-Hilbert	par55on	func5on	

16	

� = eaD�2�D

N = e�� = eD�2

①  Large	N	limit		(Physical	limit	of	small	Newton	constant)		:		
	
											has	to	be	chosen	such	that																																					bounded	from	below	
	
	
						à	well-defined	1/N-expansion:		

anD � nD�2a

1

Nk
F (�, N) = F0(�) +

1

N
F1(�) +

1

N2
F2(�) + · · ·

“Genera5ng	func5on”	of	connected	triangula5ons	that	
minimize		(k	=	D?)	 anD � nD�2



2	–	Discrete	quantum	gravity	

Discrete	Einstein-Hilbert	par55on	func5on	
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� = eaD�2�D

N = e�� = eD�2

①  Large	N	limit		(Physical	limit	of	small	Newton	constant)		:		
	
											has	to	be	chosen	such	that																																					bounded	from	below	anD � nD�2a

②  Con5nuum	limit																	à	should	be	non-trivial	

		has	to	be	chosen	such	that	infinitely	many	spaces	minimize	
	
	

l ! 0

anD � nD�2a

F (�, N) =
X

connected
triangulations

1

C
�nD N�(anD�nD�2)

		



2	–	Discrete	quantum	gravity	

Discrete	Einstein-Hilbert	par55on	func5on	
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� = eaD�2�D

N = e�� = eD�2

①  Large	N	limit		(Physical	limit	of	small	Newton	constant)		:		
	
											has	to	be	chosen	such	that																																					bounded	from	below	anD � nD�2a

②  Con5nuum	limit																	à	should	be	non-trivial	

		has	to	be	chosen	such	that	infinitely	many	spaces	minimize	
	
					Con5nuum	limit	<->	singularity	of	F0		à	asympto5cs	of		F0	(string	suscep5bility…)	
	
	
	

l ! 0

anD � nD�2a

F (�, N) =
X

connected
triangulations

1

C
�nD N�(anD�nD�2)
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3	–	Previously	known	results:	D=2	



In	dimension	D=2,	gluings	of	polygons	are	combinatorial	maps	(=ribbon	graphs)	
	
Combinatorial	maps	are	discrete	D=2	surfaces		
	
The	curvature	of	a	map	only	depends	on	its	genus!		

Discrete	torus	
	

Discrete	sphere	

(Genus	=	number	of	holes)	

19	

3	–	Previously	known	results:	D=2	

à The	enumera5on	of	maps	of	a	given	genus	is	a	very	ac5ve	domain	of	research	
since	the	60’s	(Tufe,	Bender,	Canfield,	and	so	many	more	…)	



à 		
	
	
à Large	N	limit	selects	all	discrete	spheres	
	
	
	
à  Con5nuum	limit	is	the	Brownian	sphere,	
A	random	con5nuous	metric	space	with	Hausdorff		
dimension	4	(Marckert,	LeGall,	Miermont…	2006…)	
	
	
Equivalent	to	Liouville	D=2	quantum	Gravity	
(Conjectured	by	physicists	in	80’s,	90’s…	
…math.	proof	by	Miller	&	Sheffield	2016…)	
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3	–	Previously	known	results:	D=2	

Fig	:	J.	Bernelli	

a = 1/2



3	–	Previously	known	results:	colored	triangula5ons	in	any	D		
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4	– Some	recent	results	



Dimension	3	

4	–	Some	recent	results	
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Octahedra	à	Branched	polymers	(Bonzom,	L.L.	2016)	
	
	
Simplest	torus	à	“Branched	polymers”	(Bonzom,	L.L.,	Rivasseau	2015,	L.L.,	Thürigen	2017)	
	
	
All	colored-triangulated	spheres	(balls)	à	“Branched	polymers”	(Bonzom	2018)					(				is	known)	

…To	be	con1nued,	but	quite	disappoin1ng… 	

a = 11/8

a = 1

a



Dimension	4	

4	–	Some	recent	results	
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Building	blocks	of	size	4	à	3	cri4cal	regimes	(Bonzom,	Delepouve,	Rivasseau	2015)	
	
Building	blocks	of	size	6	à	same	3	cri4cal	regimes		(L.L.,	Thürigen	2017)											(				is	known)	
	

“Branched	polymers”	
(=	con1nuum	tree)	
		

“Prolifera5on	of	baby	
universes”	
à	Cac1	of	BS	?	

“2D	quantum	gravity”		
(=	Brownian	sphere	BS)	

a = 3/2

a

� = 1/3



à  		In	D=4,	the	cri5cal	behavior	of	maximal	curvature		
	configura5ons	is	NOT	universal…		

	
	
				…	it	depends	on	the	building	block… Need	to	keep	exploring!	

à  	In	D=2,	the	cri5cal	behavior	of	large	N	surfaces	does	not	depend	on	the	
discre5za5on	of	the	boundary,	it	is	universal	(2D	quantum	gravity).	

à  	In	D=3,	as	far	as	we	know,	it	also	seems	universal	(branched	polymers).	
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Can	we	find	new	cri5cal	regimes	this	way??	
	

Can	we	find	suitable	Brownian	con5nuum	volumes	some	other	way?	
	

(see	ongoing	work	in	the	last	slides)		
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5	–	Random	tensor	models	



5	–	Random	tensor	models	

Introduced	in	early	90’s	by:		Ambjorn	et	al,	Sasakura,	Gross		
	
1/N	expansion	and	melonic	graphs	in	2010-13:	Gurau,	Rivasseau,	Bonzom,	Riello,	Ryan	…	
	
Recent	developments	presented	in	this	talk:	Rivasseau,		Bonzom,	Delepouve,	L.L.,	Thürigen	



M

M

M̄ M̄

M̄

M

M M

M̄

M̄

M̄

M
à	Gluings	of	hexagons!	

Z =

Z
e�N Tr

⇥
MM†��(MM†)3

⇤
dMdM†

=


e�

1
N Tr @

@M
@

@M† e�NTr(MM†)3
�

M=0

Matrix	models	

Interac4on:	

Par44on	func4on:	
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Tr
�
(MM†)3

�
M

M M

M̄ M̄

M̄



Matrix	models	

1/N	expansion	of	2	point	func4on:	

Gp,g(�) =
X

n�0

cp,g,n�
n

where	the												are	genera5ng	func5ons	of	connected	rooted	gluings	of	p-gons	of	genus	g			Gp,g

the	coefficients																being	the	number	of	rooted	surfaces	of	genus	g	made	of	n	p-gons	cp,g,n

A	few	names	(among	so	many	more):	’t	Hooz,		Kazakov,	David,	Itzykson,	Zuber,	Ginsparg,	
Di	Francesco,	Guiter,	Bourer,	Eynard…	

à	Use	matrix	models	to	count	surfaces!	
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Gp(N,�) =
X

g�0

N2�2gGp,g(�)



ZB =

Z
e�ND�1

⇥
T.T̄��NsTrB(T,T̄ )

⇤
dTdT̄

5	–	Random	tensor	models	

Interac4on:	

U(N)D )Invariant	under		 Specific	colored	structure	

Par44on	func4on:	

Find	the	correct	value!!		
(at	most	a	unique	ra5onal…L.L.	2018)		
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Trocta(T, T̄ )
T

T̄

T̄

T

T

T̄

T̄

T

T

T̄

T̄
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5	–	Random	tensor	models	

1/N	expansion	of	2	point	func4on:	

Gluings	of	building	blocks		B
Where:	

a = (D � 1)
⇣ |B|

2
� 1

⌘
� s

31	

GB(�, N) =
X

G2G(B)
connected
rooted

�nD NnD�2�anD

Find	the	right																		Find	the	right				
…see	the	discrete	QG	discussion	in	early	slides	

s a



Find	the	right																		Find	the	right				
…see	the	discrete	QG	discussion	in	early	slides	

5	–	Random	tensor	models	

Where:	

If				is	well	chosen,	we	have	a	well-defined	1/N	expansion,	with	infinitely	many	terms	per	
(non-empty)	order.	
	
As	for	matrix	models,	the	tensor	models	count	gluings	of	building	blocks,	according	to	some	
well	chosen	generaliza5on	of	the	genus.	

a = (D � 1)
⇣ |B|

2
� 1

⌘
� s

31	

1/N	expansion	of	2	point	func4on:	

Gluings	of	building	blocks		

GB(�, N) =
X

G2G(B)
connected
rooted

�nD NnD�2�anD

B

s a

s



à  	The	conclusions	from	last	sec5on	also	apply	for	tensor	models!	
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Conclusions	

§  Recent	exact	results	iden5fy	3	universality	classes	for	some	simple	Euclidean	
dynamical	triangula5ons	/	random	tensor	models	

	

	à	escaped	the	branched	polymer	phase	in	DT	
	

	à	new	classes	from	Euclidean	DT?	Not	excluded	but	s5ll	open	ques5on	
	
§  We	can	iden5fy	and	count	exactly	the	large	N	spaces	for	many	building	blocks	in	

D=3,	very	few	in	D=4		+	con5nuum	limit	(?)	
	
					We	can	iden5fy	and	count	the	large	spaces	contribu5ng	at	any	order	in	1/N	for	
triangula5ons	and	for	a	few	others	(=double	scaling)		
	
§  These	combinatorial	techniques	apply	to	the	iden5fica5on	of	graphs	contribu5ng	

to	the	SYK	model	(and	SYK-like	tensor	models),	for	which	we	can	also	iden5fy	the	
graphs	contribu5ng	at	any	order…	
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Large	N	graphs	

Discrete	QG	models:		
	
Need	higher	dimensional	random	geometry	
to	emerge	at	large	N	in	the	con5nuum		
(NOT	branched	polymers)	
	
…	Currently	unknown	(and	hard	to	find…)	

SYK-like	models:		
Need	solvability	at	large	N	
à	Tree-like	graphs	
à Branched	polymers	in	the	con5nuum	
	
…	The	large	majority	of	models!!	

Conclusions	

Very	different	needs!!	
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Some ongoing work
1 – Random tensor models. 
(e.g… Description at any order for all the tree-like theories (SYK-like). [with S. Dartois])

2 –New continuum limits (Brownian  volumes) from more direct approaches? 
[one project with S. Dartois, another one with JF. Marckert]

3 – Enumeration and statistical properties of graphs contributing to the (colored) SYK 
model at any order in 1/N [with E. Fusy  & A. Tanasa]

4 – Methods apply to ``quantum information’’ problems (probability that a multipartite 
state is entangled) [with S. Dartois & I. Nechita 1808.08554]

5 – Non-linear differential equations involved in turbulences, with random initial 
conditions and coefficients [with S. Dartois & V. Rivasseau & O. Evnin & G. Valette]

5 – Study of the properties of the wave function of the canonical tensor model 
[with N. Sasakura] 36
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