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A simple combinatorial problem in discrete geometry

In any dimension, take a collection of “rigid” building blocks of your choice.
Glue them together in every possible way.
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— Can we count the resulting discrete
spaces according to their global

curvature?
"""""

- What are the asymptotic properties
of the spaces of maximal curvature? .
What do they look like in the T AN N
continuum?

-
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1 — Curvature...?

Start with the simplest case: triangulations




1 — Curvature...?

In a triangulation, suppose that all edges have the same length

— “canonical geometry” (notion of distance, local curvature...)




1 — Curvature...?

Local curvature:

Number of D-simplices around
(D-2)-simplices



1 — Curvature...?

Local curvature: Dimension D=2

Number of equilateral triangles around
vertices :

* positive local
curvature
Deficit angle in dimension 2

j\/(?J) e locally flat

2 (1 — )
9
* negative local
curvature

Number of D-simplices around
(D-2)-simplices




1 — Curvature...?

Local curvature: Dimension D=3

Number of tetrahedra around edges :

Number of D-simplices around
(D-2)-simplices

Deficit angle in dimension D

1
21 — Np(vp_2) X arccos = N X

arccos %



1 — Curvature...?

Total curvature:

1
Qx = arccos —
D

Curv ~ Z (27T — ND(’UD_Q))

UD -2

DD +1
~ 2TNp_9 — Q ( 2_|— )nD

- Computed from the number of (D-2)-simplices and D-simplices (" p—2 and np)



1 — Curvature...?

Total curvature:

1
Qx = arccos —
D

Curv ~ Z (27T — ND(’UD_Q))

UD -2

~ 2TNp_9 — & np

- Computed from the number of (D-2)-simplices and D-simplices (" p—2 and np)

- Maximize the curvature at fixed np €<= Maximize N p_2 at fixed N p



1 — Curvature...?

Dimension D=2: Bigger polygons???

/N
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1 — Curvature...?

Dimension D=2: Bigger polygons??? A possible choice (only depends on
one length)

.
‘Q
(

~~~~~
.....
...........

Other possible choice which works in what follows: 1 choice of angle for each polygon



1 — Curvature...?

Dimension D: Bigger polygons??? A possible choice (only depends on

one length): SAME




2 - Discrete quantum gravity:

Dynamical triangulations from bigger building blocks...



2 — Discrete quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

F — / D[g]e_dex\/m(Z/\_ 163TG R)
M A A

Manifold —|

Metric

A

Ricci scalar curvature

Cosmological constant

Newton’s constant

— (Euclidean) general relativity without matter from least action principle



2 — Discrete quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

F = / D[g]e_dex\/m(Z/\_ 163TG R)
M

e Complicated object = Try to make sense of it by considering
* Not well defined a discrete analog



2 — Discrete quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

2

T
connected
triangulatio

of M

_ 9.
e discrete

Cr

Edges all have same length [
(canonical geometry)

(David, Ambjorn, Kazakov and many more... 80’s) 10



1 — Discrete quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

1
F — D 6—deCU\/H(2A—ﬁR) — - e_Sdiscrete
| Dl > 4

T
connected
triangulation

—SH‘I—

Allow topology fluctuations at microscopic level —|

11



1 — Discrete quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

7 1 1
FZ/MD[gle Jad%alolCA-mmmR) o, Y o 6

T
connected
triangulation
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1 — Discrete quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

:/ D[g]e dex\/E(QA—ﬁR) — Z - e—’iDnD eFﬁD—2nD_2
M

gonnected
triangulation

(Regge)
Sdiscrete — Kp X nD(T — RKp—2 XNp— 2

# of D-simplices /

# of (D-2)-simplices
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1 — Discrete quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

:/ D[g]e dex\/E(QA—ﬁR) — Z - e—’iDnD eFﬁD—2nD_2
M

gonnected
triangulation

(Regge)
Sdiscrete — KD X Np (T) — Rp—2 X nD—Z(T)

/ d°xz+/|g|R o Curvature
M

Curvature «<—> number of (D-2) and D-simplices 13




1 — Discrete quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

:/ D[g]e dex\/E(QA—ﬁR) — Z - e—’iDnD eFﬁD—2nD_2
M

gonnected
triangulation

(Regge)
Sdiscrete — KD X Np (T) — Rp—2 X nD—Q(T)

1
/{D_QOCa >> 1
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Quantum gravity? Analogy with thermodynamics...

Microscopic description of gaz

Microscopic description of space-time

Accessible state S

n(S) particles

Thermodynamical limi

Z eHn(S)

states S

Inverse temperature

Chemical potential

Energy

t n — 400
Dist — 0

Grand-canonical partition function

o~ BE(S)

Triangulation S
nD(ST) D-simplices
Continuum limit np — +00
[ =0
Discrete Einstein-Hilbert partition function

E e—l‘ﬁDnD(ST) e’iD—2nD—2(ST)

ST
connected
triangulation

Inverse of Newton constant 1
Rp—92 X 5

—IQD?

—nD_Q?
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Energy

t n — 400
Dist — 0

Grand-canonical partition function

o~ BE(S)

Triangulation S
nD(ST) D-simplices
Continuum limit np — +00
[ =0
Discrete Einstein-Hilbert partition function

E e—l‘ﬁDnD(ST) eﬁp—an—Q(ST)

ST
connected
triangulation

Inverse of Newton constant 1
Rp—92 X 5

—IQD?

_M Not bounded from below. ..
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Quantum gravity? Analogy with thermodynamics...

Microscopic description of gaz

Microscopic description of space-time

Accessible state S

n(S) particles

t N +00
Dist — 0

Grand-canonical partition function

Z ehn(S) o—BE(S)

Thermodynamical limi

states S
Inverse temperature 8= kB%
Chemical potential i
Energy 8(5)

Triangulation S

np(St) D-simplices

np — +0o0
[ —0

Continuum limit

Discrete Einstein-Hilbert partition function

E : elakp—2—kp)np ,—kp-2(anp—np-2)

St
connected
triangulation

Inverse of Newton constant 1
Rp—92 X 5

ARp—-2 — KD

anp —Np-2

15







2 — Discrete quantum gravity

Discrete Einstein-Hilbert partition function

)\ — eaK,D—2_K/D F )\ N — i )\nD N—(anp—np_z)
7 C A
— KpD_ connected
N =c¢e¢ p — e P2 triangulations

@ Large N limit (Physical limit of small Newton constant) :

(1 has to be chosen such that a” ) — N —_9 bounded from below
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2 — Discrete quantum gravity

Discrete Einstein-Hilbert partition function

)\ — eaK,D—2_K/D F )\ N — i )\nD N—(anp—np_z)
7 C A
— KpD_ connected
N =c¢e¢ p — e P2 triangulations

@ Large N limit (Physical limit of small Newton constant) :

(1 has to be chosen such that a” ) — N —_9 bounded from below

- well-defined 1/N-expansion:

1 1 1

]— “Generating function” of connected triangulations that

— minimize anNnp — NpH_—
(k=D?) D D—-2 16



2 — Discrete quantum gravity

Discrete Einstein-Hilbert partition function

)\ — eaK,D—2_K/D F )\ N — i )\nD N—(anp—np_z)
7 C A
— KpD_ connected
N =c¢e¢ p — e P2 triangulations

@ Large N limit (Physical limit of small Newton constant) :

(1 has to be chosen such that a” ) — N —_9 bounded from below

@ Continuum limit { —> O - should be non-trivial

(1 has to be chosen such that infinitely many spaces minimize anp — Np_—_9
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2 — Discrete quantum gravity

Discrete Einstein-Hilbert partition function

)\ — eaK,D—2_K/D F )\ N — i )\nD N—(anp—np_z)
7 C A
— KpD_ connected
N =c¢e¢ p — e P2 triangulations

@ Large N limit (Physical limit of small Newton constant) :

(1 has to be chosen such that a” ) — N —_9 bounded from below

@ Continuum limit { —> O - should be non-trivial

(1 has to be chosen such that infinitely many spaces minimize anp — Np_—_9

Continuum limit <-> singularity of F, = asymptotics of F, (string susceptibility...)
17



More general setting: glue any kind of building blocks

 Can we find @ satisfying conditions (1) and (2) ?

e What do we recover in the large N limit?

- Identify triangulations which maximize M p—2 at fixed N p
(= maximize the curvature at fixed 7 p = minimize the energy)

If they behave as anp — np_o = —k, then we can choose
this .

- Enumerate the corresponding triangulations
(to obtain the large N correlation functions)

e What do we recover in the continuum limit?
- Properties of large such triangulations?
What are the Hausdorff dimension, fractal dimension...?

18



More general setting: glue any kind of building blocks

 Can we find @ satisfying conditions (1) and (2) ?

e What do we recover in the large N limit?

- Identify triangulations which maximize M p—2 at fixed N p
(= maximize the curvature at fixed 7 p = minimize the energy)

If they behave as anp — np_o = —k, then we can choose
this .

- Enumerate the corresponding triangulations
(to obtain the large N correlation functions)
- The combinatorial

problem of the
introduction!!!
e \What do we recover in the continuum limit?

- Properties of large such triangulations?
What are the Hausdorff dimension, fractal dimension...?

18



3 - Previously known results: D=2



3 - Previously known results: D=2

In dimension D=2, gluings of polygons are combinatorial maps (=ribbon graphs)
Combinatorial maps are discrete D=2 surfaces

The curvature of a map only depends on its genus! (Genus = number of holes)

'/ <
=

Discrete sphere Discrete torus

- The enumeration of maps of a given genus is a very active domain of research
since the 60’s (Tutte, Bender, Canfield, and so many more ...) 19



3 - Previously known results: D=2

> a=1/2

— Large N limit selects all discrete spheres

- Continuum limit is the Brownian sphere,

A random continuous metric space with Hausdorff
dimension 4 (Marckert, LeGall, Miermont... 2006...)

Equivalent to Liouville D=2 quantum Gravity

(Conjectured by physicists in 80’s, 90’s...
...math. proof by Miller & Sheffield 2016...)

L N
X

Fig : J. Bettinelli

20



3 - Previously known results: colored triangulations in any D



3 - Previously known results: triangulations in any D

5 a=D(D—1)/4

—> Large N limit selects melonic triangulations

- Continuum limit is branched polymers, > \
A random continuous tree with Hausdorff dimension 2 F__*‘ﬁ";
(...Aldous... 1990...Gurau & Ryan 2014) i & ,.(9' A
@S -:’ : ? ;: 2 2 ~
e “- j-*‘}*‘-f", g f L e r
o \ - i Vb .S "‘f‘t |
Tih ~ A
(5 . |
E. \\ 1 | ;
...Disappointing limit from the geometric ' _.r.,-* e
point of vue ... 2 ax |' { AP
e
|




4 — Some recent results



4 — Some recent results

Dimension 3

Octahedra = Branched polymers (Bonzom, L.L. 2016) a=11/8

Simplest torus = “Branched polymers” (Bonzom, L.L., Rivasseau 2015, L.L., Thiirigen 2017) @ = 1

All colored-triangulated spheres (balls) 2 “Branched polymers” (Bonzom 2018) (@ is known)

...To be continued, but quite disappointing...

22



4 — Some recent results

Dimension 4

Building blocks of size 4 - 3 critical regimes (Bonzom, Delepouve, Rivasseau 2015) a = 3/2

Building blocks of size 6 = same 3 critical regimes (L.L., Thiirigen 2017) (@ is known)
“Branched polymers” “Proliferation of baby “2D quantum gravity”
(= continuum tree) universes” (= Brownian sphere BS)

- CactiofBS? ~v=1/3 )3



= In D=2, the critical behavior of large N surfaces does not depend on the
discretization of the boundary, it is universal (2D quantum gravity).

= In D=3, as far as we know, it also seems universal (branched polymers).

= In D=4, the critical behavior of maximal curvature
configurations is NOT universal...

... it depends on the building block... Need to keep exploring!

24



Can we find new critical regimes this way??
Can we find suitable Brownian continuum volumes some other way?

(see ongoing work in the last slides)

25



5 — Random tensor models



5 — Random tensor models

Introduced in early 90’s by: Ambjorn et al, Sasakura, Gross
1/N expansion and melonic graphs in 2010-13: Gurau, Rivasseau, Bonzom, Riello, Ryan ...

Recent developments presented in this talk: Rivasseau, Bonzom, Delepouve, L.L., Thirigen



Matrix models

Interaction:

Tr((MM')?) <«

Partition function:

7 _ /G—NTr[MMT—A(MMT)ﬂ IV

1 o (o)
. [eNTraM o eANTr(MMT)3]
M=0

— Gluings of hexagons!

26



Matrix models

1/N expansion of 2 point function:

Gp(N,A) = Z NQ_Qggp,g()‘)

920

where the gp,g are generating functions of connected rooted gluings of p-gons of genus g
P n
Gp.g(A) = E , Cp,g,nA
n>0

the coefficients Cp ¢ n being the number of rooted surfaces of genus g made of n p-gons

—> Use matrix models to count surfaces!

A few names (among so many more): 't Hooft, Kazakov, David, Itzykson, Zuber, Ginsparg,
Di Francesco, Guiter, Bouttier, Eynard...

27



5 — Random tensor models

Interaction:

Invariant under U(N)D —>  Specific colored structure

Trocta (Ta T) < >
Partition function:

Ty — /G—ND_l T.T-AN®Tes(T,T)] ITdT

Find the correct value!!
(at most a unique rational...L.L. 2018)

28



5 — Random tensor models

1/N expansion of 2 point function:

GB()\,N) = Z )\nD N”D—2—Cm[)

GeG(B)
connected
rooted
T Gluings of building blocks I3
Where:
0 — (D B 1) @ _ g Find the right S «— Find the right a
B ...see the discrete QG discussion in early slides

31



5 — Random tensor models

1/N expansion of 2 point function:

GB()\,N) = Z )\nD N”D—2—Cm[)

GeG(B)
connected
rooted
T Gluings of building blocks I3
Where:
0 — (D B 1) @ _ g Find the right S «— Find the right a
B ...see the discrete QG discussion in early slides

If S is well chosen, we have a well-defined 1/N expansion, with infinitely many terms per
(non-empty) order.

As for matrix models, the tensor models count gluings of building blocks, according to some
well chosen generalization of the genus.

31



- The conclusions from last section also apply for tensor models!



Conclusions



Conclusions

= Recent exact results identify 3 universality classes for some simple Euclidean
dynamical triangulations / random tensor models

— escaped the branched polymer phase in DT

= new classes from Euclidean DT? Not excluded but still open question

= We can identify and count exactly the large N spaces for many building blocks in
D=3, very few in D=4 + continuum limit (?)

We can identify and count the large spaces contributing at any order in 1/N for
triangulations and for a few others (=double scaling)

= These combinatorial techniques apply to the identification of graphs contributing
to the SYK model (and SYK-like tensor models), for which we can also identify the
graphs contributing at any order...

34



Conclusions

Very different needs!!

Large N graphs

/

Discrete QG models:

Need higher dimensional random geometry
to emerge at large N in the continuum
(NOT branched polymers)

... Currently unknown (and hard to find...)

SYK-like models:

Need solvability at large N
- Tree-like graphs
— Branched polymers in the continuum

... The large majority of models!!

35



Some ongoing work

1 — Random tensor models.
(e.g... Description at any order for all the tree-like theories (SYK-like). [with S. Dartois])

2 —New continuum limits (Brownian volumes) from more direct approaches?
[one project with S. Dartois, another one with JF. Marckert]

3 — Enumeration and statistical properties of graphs contributing to the (colored) SYK
model at any order in 1/N [with E. Fusy & A. Tanasa]

4 — Methods apply to " quantum information” problems (probability that a multipartite
state is entangled) [with S. Dartois & I. Nechita 1808.08554]

5 — Non-linear differential equations involved in turbulences, with random initial
conditions and coefficients [with S. Dartois & V. Rivasseau & O. Evnin & G. Valette]

5 — Study of the properties of the wave function of the canonical tensor model
[with N. Sasakura] 36
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