Highly entangled quantum spin chains and their extensions by semigroups

Fumihiko Sugino

Center for Theoretical Physics of the Universe, Institute for Basic Science

Workshop "Discrete Approaches to the Dynamics of Fields and Space-Time"

Tohoku University, September 10, 2018

Highly entangled quantum spin chains and their extensions by semigroups

Fumihiko Sugino

Center for Theoretical Physics of the Universe, Institute for Basic Science

Workshop "Discrete Approaches to the Dynamics of Fields and Space-Time"

Tohoku University, September 10, 2018

Bravyi et al, Phys. Rev. Lett. **118** (2012) 207202, arXiv: 1203.5801 R. Movassagh and P. Shor, Proc. Natl. Acad. Sci. **113** (2016) 13278, arXiv: 1408.1657

F.S. and P. Padmanabhan, J. Stat. Mech. **1801** (2018) 013101, arXiv: 1710.10426

P. Padmanabhan, F.S. and V. Korepin, arXiv: 1804.00978

Outline

Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin model

Summary and discussion

Quantum entanglement

Most surprising feature of quantum mechanics,
 No analog in classical mechanics

Quantum entanglement

- Most surprising feature of quantum mechanics,
 No analog in classical mechanics
- ▶ From pure state of the full system $S: \rho = |\psi\rangle\langle\psi|$, reduced density matrix of a subsystem A: $\rho_A = \operatorname{Tr}_{S-A}\rho$ can become mixed states, and has nonzero entanglement entropy

$$S_A = -\mathrm{Tr}_A \left[\rho_A \ln \rho_A \right].$$

This is purely a quantum property.

- ▶ Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto (\text{area of } A)$
- ► Gapped systems in 1D are proven to obey the area law. [Hastings 2007]

- ▶ Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto (\text{area of } A)$
- ► Gapped systems in 1D are proven to obey the area law.

 [Hastings 2007] (Area law violation) ⇒ Gapless
- For gapless case, (1+1)-dimensional CFT violates logarithmically: $S_A = \frac{c}{3} \ln (\text{volume of } A)$. [Calabrese, Cardy 2009]

- ▶ Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto (\text{area of } A)$
- ► Gapped systems in 1D are proven to obey the area law.

 [Hastings 2007] (Area law violation) ⇒ Gapless
- For gapless case, (1+1)-dimensional CFT violates logarithmically: $S_A = \frac{c}{3} \ln (\text{volume of } A)$. [Calabrese, Cardy 2009]
- ▶ Belief for gapless case in *D*-dim. (over two decades) : $S_A = O(L^{D-1} \ln L)$ (*L*: length scale of *A*)

- ▶ Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto (\text{area of } A)$
- ► Gapped systems in 1D are proven to obey the area law.

 [Hastings 2007] (Area law violation) ⇒ Gapless
- For gapless case, (1+1)-dimensional CFT violates logarithmically: $S_A = \frac{c}{3} \ln (\text{volume of } A)$. [Calabrese, Cardy 2009]
- ▶ Belief for gapless case in *D*-dim. (over two decades) : $S_A = O(L^{D-1} \ln L)$ (*L*: length scale of *A*)
- Recently, 1D solvable spin chain model which exhibit extensive entanglement entropy have been discussed.
 - Beyond logarithmic violation: $S_A \propto \sqrt{\text{(volume of } A)}$ [Movassagh, Shor 2014], [Salberger, Korepin 2016] Counterexamples of the belief!

Motzkin spin model

Colored Motzkin model

SIS Motzkin mode

Colored SIS Motzkin mode

Summary and discussion

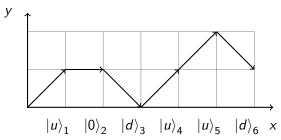
- ▶ 1D spin chain at sites $i \in \{1, 2, \dots, 2n\}$
- Spin-1 state at each site can be regarded as up, down and flat steps;

$$|u\rangle \Leftrightarrow \nearrow$$
, $|d\rangle \Leftrightarrow \searrow$, $|0\rangle \Leftrightarrow \longrightarrow$

- ▶ 1D spin chain at sites $i \in \{1, 2, \dots, 2n\}$
- Spin-1 state at each site can be regarded as up, down and flat steps;

$$|u\rangle \Leftrightarrow \nearrow$$
, $|d\rangle \Leftrightarrow \searrow$, $|0\rangle \Leftrightarrow \longrightarrow$

▶ Each spin configuration \Leftrightarrow length-2n walk in (x, y) plane Example)



▶ Bulk part: $H_{bulk} = \sum_{i=1}^{2n-1} \Pi_{j,j+1}$,

$$\Pi_{j,j+1} = |D\rangle_{j,j+1}\langle D| + |U\rangle_{j,j+1}\langle U| + |F\rangle_{j,j+1}\langle F|$$

(local interactions) with

$$|D\rangle \equiv \frac{1}{\sqrt{2}} \left(|0, d\rangle - |d, 0\rangle \right),$$

$$|U\rangle \equiv \frac{1}{\sqrt{2}}(|0, u\rangle - |u, 0\rangle),$$

$$|F\rangle \equiv \frac{1}{\sqrt{2}} (|0, 0\rangle - |u, d\rangle).$$

▶ Bulk part: $H_{bulk} = \sum_{j=1}^{2n-1} \Pi_{j,j+1}$,

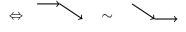
$$\Pi_{j,j+1} = |D\rangle_{j,j+1}\langle D| + |U\rangle_{j,j+1}\langle U| + |F\rangle_{j,j+1}\langle F|$$

(local interactions) with

$$|D\rangle \equiv \frac{1}{\sqrt{2}} (|0, d\rangle - |d, 0\rangle),$$

$$|U\rangle \equiv \frac{1}{\sqrt{2}} (|0, u\rangle - |u, 0\rangle),$$

$$|F\rangle \equiv \frac{1}{\sqrt{2}} (|0, 0\rangle - |u, d\rangle).$$



▶ Bulk part: $H_{bulk} = \sum_{j=1}^{2n-1} \Pi_{j,j+1}$,

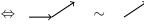
$$\Pi_{j,j+1} = |D\rangle_{j,j+1}\langle D| + |U\rangle_{j,j+1}\langle U| + |F\rangle_{j,j+1}\langle F|$$

(local interactions) with

$$|D
angle \equiv rac{1}{\sqrt{2}} \left(|0, d
angle - |d, 0
angle
ight),$$

$$|U\rangle \equiv \frac{1}{\sqrt{2}} (|0, u\rangle - |u, 0\rangle),$$

$$|F\rangle \equiv \frac{1}{\sqrt{2}} (|0, 0\rangle - |u, d\rangle).$$



▶ Bulk part: $H_{bulk} = \sum_{j=1}^{2n-1} \Pi_{j,j+1}$,

$$\Pi_{j,j+1} = |D\rangle_{j,j+1}\langle D| + |U\rangle_{j,j+1}\langle U| + |F\rangle_{j,j+1}\langle F|$$

(local interactions) with

$$|D\rangle \equiv \frac{1}{\sqrt{2}} (|0, d\rangle - |d, 0\rangle),$$

$$|U\rangle \equiv \frac{1}{\sqrt{2}} (|0, u\rangle - |u, 0\rangle),$$

$$|F\rangle \equiv \frac{1}{\sqrt{2}} (|0, 0\rangle - |u, d\rangle).$$

$$\Leftrightarrow$$
 \nearrow \sim \nearrow

$$\Leftrightarrow$$
 \longrightarrow \sim \nearrow

"gauge equivalence".

▶ Boundary part: $H_{bdy} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u|$

▶ Boundary part: $H_{bdy} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u|$

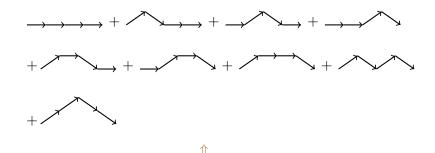
 $ightharpoonup H_{Motzkin}$ is the sum of projection operators.

 \Rightarrow Positive semi-definite spectrum

We find the unique zero-energy ground state.

- ▶ Boundary part: $H_{bdy} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u|$
 - \Downarrow
- $ightharpoonup H_{Motzkin}$ is the sum of projection operators.
 - ⇒ Positive semi-definite spectrum
- We find the unique zero-energy ground state.
 - **Each** projector in $H_{Motzkin}$ annihilates the zero-energy state.
 - ⇒ Frustration free
- ▶ The ground state corresponds to randoms walks starting at (0,0) and ending at (2n,0) restricted to the region $y \ge 0$ (Motzkin Walks (MWs)).

Example) 2n = 4 case, MWs:



Ground state:

$$|P_4\rangle = \frac{1}{\sqrt{9}} [|0000\rangle + |ud00\rangle + |0ud0\rangle + |00ud\rangle + |u0d0\rangle + |u0d0\rangle + |u00d\rangle + |udud\rangle + |uudd\rangle].$$

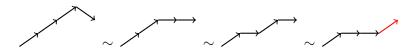
Note

Forbidden paths for the ground state

1. Path entering y < 0 region

Forbidden by H_{bdy}

2. Path ending at nonzero height



Forbidden by H_{bdy}

Entanglement entropy of the subsystem $A = \{1, 2, \dots, n\}$:

Normalization factor of the ground state $|P_{2n}\rangle$ is given by the number of MWs of length 2n: $M_{2n} = \sum_{k=0}^{n} C_k \binom{2n}{2k}$.

$$C_k = \frac{1}{k+1} \binom{2k}{k}$$
: Catalan number

Entanglement entropy of the subsystem $A = \{1, 2, \dots, n\}$:

Normalization factor of the ground state $|P_{2n}\rangle$ is given by the number of MWs of length 2n: $M_{2n} = \sum_{k=0}^{n} C_k \binom{2n}{2k}$.

$$C_k = \frac{1}{k+1} \binom{2k}{k}$$
: Catalan number

▶ Consider to trace out the density matrix $\rho = |P_{2n}\rangle\langle P_{2n}|$ w.r.t. the subsystem $B = \{n+1, \cdots, 2n\}$. Schmidt decomposition:

$$\left|P_{2n}\right\rangle = \sum_{h>0} \sqrt{p_{n,n}^{(h)}} \left|P_n^{(0\to h)}\right\rangle \otimes \left|P_n^{(h\to 0)}\right\rangle$$

with
$$p_{n,n}^{(h)} \equiv \frac{\left(M_n^{(h)}\right)^2}{M_{2n}}$$
.

$$\uparrow$$
 Paths from $(0,0)$ to (n,h)

Gaussian distribution

• $M_n^{(h)}$ is the number of paths in $P_n^{(0\to h)}$.

For $n \to \infty$,

$$ho_{n,n}^{(h)} \sim rac{3\sqrt{6}}{\sqrt{\pi}} rac{(h+1)^2}{n^{3/2}} \, e^{-rac{3}{2}rac{(h+1)^2}{n}} imes [1 + O(1/n)] \, .$$

Reduced density matrix

$$\rho_{A} = \operatorname{Tr}_{B} \rho = \sum_{h>0} p_{n,n}^{(h)} \left| P_{n}^{(0 \to h)} \right\rangle \left\langle P_{n}^{(0 \to h)} \right|$$

Entanglement entropy

$$S_A = -\sum_{h \ge 0} p_{n,n}^{(h)} \ln p_{n,n}^{(h)}$$

$$= \frac{1}{2} \ln n + \frac{1}{2} \ln \frac{2\pi}{3} + \gamma - \frac{1}{2} \qquad (\gamma: \text{ Euler constant})$$

up to terms vanishing as $n \to \infty$.

[Bravyi et al 2012]

Notes

▶ The system is critical (gapless). S_A is similar to the (1+1)-dimensional CFT with c=3/2.

Notes

- ▶ The system is critical (gapless). S_A is similar to the (1+1)-dimensional CFT with c=3/2.
- ▶ But, gap scales as $O(1/n^z)$ with $z \ge 2$. The system cannot be described by relativistic CFT.

Notes

- ▶ The system is critical (gapless). S_A is similar to the (1+1)-dimensional CFT with c=3/2.
- ▶ But, gap scales as $O(1/n^z)$ with $z \ge 2$. The system cannot be described by relativistic CFT.
- Excitations have not been much investigated.

Motzkin spin model

Colored Motzkin model

SIS Motzkin mode

Colored SIS Motzkin mode

Summary and discussion

▶ Introducing color d.o.f. $k = 1, 2, \dots, s$ to up and down spins as

$$\left|u^{k}\right\rangle \Leftrightarrow \stackrel{k}{\nearrow}, \qquad \left|d^{k}\right\rangle \Leftrightarrow \stackrel{k}{\searrow}, \qquad \left|0\right\rangle \Leftrightarrow \longrightarrow$$

Color d.o.f. decorated to Motzkin Walks

Introducing color d.o.f. $k = 1, 2, \dots, s$ to up and down spins as

$$\left|u^{k}\right\rangle \Leftrightarrow \stackrel{k}{\nearrow}, \qquad \left|d^{k}\right\rangle \Leftrightarrow \stackrel{k}{\searrow}, \qquad \left|0\right\rangle \Leftrightarrow \longrightarrow$$

Color d.o.f. decorated to Motzkin Walks

- ► Hamiltonian $H_{cMotzkin} = H_{bulk} + H_{bdy}$
 - Bulk part consisting of local interactions:

$$H_{bulk} = \sum_{j=1}^{2n-1} \left(\Pi_{j,j+1} + \Pi_{j,j+1}^{cross} \right),$$

$$\Pi_{j,j+1} = \sum_{k=1}^{s} \left[\left| D^{k} \right\rangle_{j,j+1} \left\langle D^{k} \right| + \left| U^{k} \right\rangle_{j,j+1} \left\langle U^{k} \right| + \left| F^{k} \right\rangle_{j,j+1} \left\langle F^{k} \right| \right]$$

with

$$\begin{vmatrix} D^k \rangle \equiv \frac{1}{\sqrt{2}} \left(\left| 0, d^k \right\rangle - \left| d^k, 0 \right\rangle \right), \\ \left| U^k \right\rangle \equiv \frac{1}{\sqrt{2}} \left(\left| 0, u^k \right\rangle - \left| u^k, 0 \right\rangle \right), \\ \left| F^k \right\rangle \equiv \frac{1}{\sqrt{2}} \left(\left| 0, 0 \right\rangle - \left| u^k, d^k \right\rangle \right), \end{aligned}$$

and

$$\Pi_{j,j+1}^{cross} = \sum_{k \neq k'} \left| u^k, \ d^{k'} \right\rangle_{j,j+1} \left\langle u^k, \ d^{k'} \right|.$$

⇒ Colors should be matched in up and down pairs.

Boundary part

$$H_{bdy} = \sum_{k=1}^{s} \left(\left| d^{k} \right\rangle_{1} \left\langle d^{k} \right| + \left| u^{k} \right\rangle_{2n} \left\langle u^{k} \right| \right).$$

Colored Motzkin spin model 3

[Movassagh, Shor 2014]

► Still unique ground state with zero energy

- ► Still unique ground state with zero energy
- ightharpoonup Example) 2n = 4 case,

$$\begin{aligned} |P_4\rangle &= \frac{1}{\sqrt{1+6s+2s^2}} \Bigg[|0000\rangle + \sum_{k=1}^s \Big\{ \Big| u^k d^k 00 \Big\rangle + \dots + \Big| u^k 00 d^k \Big\rangle \Big\} \\ &+ \sum_{k,k'=1}^s \Big\{ \Big| u^k d^k u^{k'} d^{k'} \Big\rangle + \Big| u^k u^{k'} d^{k'} d^k \Big\rangle \Big\} \Bigg]. \end{aligned}$$

Entanglement entropy

steps frozen.

Paths from (0,0) to (n,h), P_n^(0→h), have h unmatched up steps.
 Let P̃_n^(0→h)({κ_m}) be paths with the colors of unmatched up

(unmatched up from height
$$(m-1)$$
 to $m) o u^{\kappa_m}$

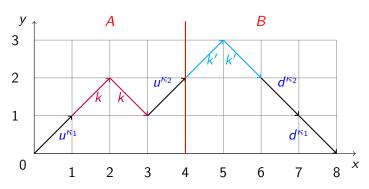
Similarly,

$$P_n^{(h \to 0)} o \tilde{P}_n^{(h \to 0)}(\{\kappa_m\}),$$
 (unmatched down from height m to $(m-1)) o d^{\kappa_m}.$

▶ The numbers satisfy $M_n^{(h)} = s^h \tilde{M}_n^{(h)}$.

Example

$$2n = 8$$
 case, $h = 2$



Schmidt decomposition

$$|P_{2n}\rangle = \sum_{h\geq 0} \sum_{\kappa_1=1}^{s} \cdots \sum_{\kappa_h=1}^{s} \sqrt{p_{n,n}^{(h)}} \times \left| \tilde{P}_n^{(0\to h)}(\{\kappa_m\}) \right\rangle \otimes \left| \tilde{P}_n^{(h\to 0)}(\{\kappa_m\}) \right\rangle$$

with

$$p_{n,n}^{(h)} = \frac{\left(\tilde{M}_n^{(h)}\right)^2}{M_{2n}}.$$

Reduced density matrix

$$\rho_{A} = \sum_{h\geq 0} \sum_{\kappa_{1}=1}^{s} \cdots \sum_{\kappa_{h}=1}^{s} p_{n,n}^{(h)} \times \left| \tilde{P}_{n}^{(0\rightarrow h)}(\{\kappa_{m}\}) \right\rangle \left\langle \tilde{P}_{n}^{(0\rightarrow h)}(\{\kappa_{m}\}) \right|.$$

▶ For $n \to \infty$,

$$p_{n,n}^{(h)} \sim \frac{\sqrt{2} \, \mathsf{s}^{-h}}{\sqrt{\pi} \, (\sigma \, n)^{3/2}} \, (h+1)^2 \, e^{-\frac{(h+1)^2}{2\sigma \, n}} \times [1 + O(1/n)]$$

with
$$\sigma \equiv \frac{\sqrt{s}}{2\sqrt{s}+1}$$
.

Note: Effectively $h \lesssim O(\sqrt{n})$.

Entanglement entropy

$$S_A = -\sum_{h\geq 0} s^h p_{n,n}^{(h)} \ln p_{n,n}^{(h)}$$

▶ For $n \to \infty$,

$$p_{n,n}^{(h)} \sim \frac{\sqrt{2} \, s^{-h}}{\sqrt{\pi} \, (\sigma \, n)^{3/2}} \, (h+1)^2 \, e^{-\frac{(h+1)^2}{2\sigma n}} \times [1 + O(1/n)]$$

with $\sigma \equiv \frac{\sqrt{s}}{2\sqrt{s}+1}$.

Note: Effectively $h \lesssim O(\sqrt{n})$.

Entanglement entropy

$$S_{A} = -\sum_{h\geq 0} s^{h} p_{n,n}^{(h)} \ln p_{n,n}^{(h)}$$

$$= (2 \ln s) \sqrt{\frac{2\sigma n}{\pi}} + \frac{1}{2} \ln n + \frac{1}{2} \ln(2\pi\sigma) + \gamma - \frac{1}{2} - \ln s$$

up to terms vanishing as $n \to \infty$.

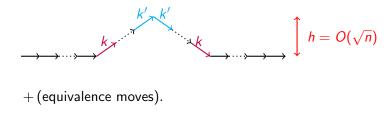
Grows as \sqrt{n} .

Comments

Matching color
$$\Rightarrow$$
 s^{-h} factor in $p_{n,n}^{(h)}$ \Rightarrow crucial to $O(\sqrt{n})$ behavior in S_A

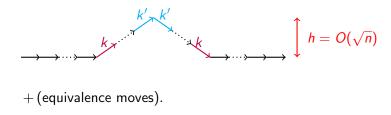
Comments

- Matching color \Rightarrow s^{-h} factor in $p_{n,n}^{(h)}$ \Rightarrow crucial to $O(\sqrt{n})$ behavior in S_A
- Typical configurations:



Comments

- Matching color \Rightarrow s^{-h} factor in $p_{n,n}^{(h)}$ \Rightarrow crucial to $O(\sqrt{n})$ behavior in S_A
- Typical configurations:



► For spin 1/2 chain (only up and down), the model in which similar behavior exhibits in colored as well as uncolored cases has been constructed. (Fredkin model) [Salberger, Korepin 2016]

Correlation functions

[Dell'Anna et al, 2016]

$$\langle S_{z,1}S_{z,2n}\rangle_{\text{connected}} \to -0.034... \times \frac{s^3-s}{6} \neq 0 \qquad (n \to \infty)$$

 \Rightarrow Violation of cluster decomposition property for s > 1

Correlation functions

[Dell'Anna et al, 2016]

$$\langle S_{z,1}S_{z,2n}\rangle_{\text{connected}} \to -0.034... \times \frac{s^3-s}{6} \neq 0 \qquad (n \to \infty)$$

 \Rightarrow Violation of cluster decomposition property for s>1 due to highly entangled ground state even though the system has local interactions

Correlation functions

[Dell'Anna et al, 2016]

$$\langle S_{z,1}S_{z,2n}\rangle_{\text{connected}} \to -0.034... \times \frac{s^3-s}{6} \neq 0 \qquad (n \to \infty)$$

- \Rightarrow Violation of cluster decomposition property for s>1 due to highly entangled ground state even though the system has local interactions
- ▶ Deformation of models to achieve the volume law behavior $(S_A \propto n)$

Weighted Motzkin/Dyck walks

[Zhang et al, Salberger et al 2016]

Introduction

Motzkin spin mode

Colored Motzkin model

SIS Motzkin model

Colored SIS Motzkin mode

Summary and discussion

► Inverse Semigroup (Semigroup): An unique inverse exists for every element. But, no unique identity (partial identities).

- ► Inverse Semigroup (Semigroup): An unique inverse exists for every element. But, no unique identity (partial identities).
- ► SIS (\subset Semigroup): Semigroup version of the symmetric group S_k S_p^k ($p = 1, \dots, k$)

- ► Inverse Semigroup (⊆ Semigroup): An unique inverse exists for every element. But, no unique identity (partial identities).
- SIS (\subset Semigroup): Semigroup version of the symmetric group S_k

$$\mathcal{S}_p^k \ (p=1,\cdots,k)$$

► $x_{a,b} \in \mathcal{S}_1^k$ maps a to b. $(a, b \in \{1, \dots, k\})$ Product rule: $x_{a,b} * x_{c,d} = \delta_{b,c} x_{a,d}$

$$x_{1,2} * x_{2,1} = x_{1,1},$$
 $x_{2,1} * x_{1,2} = x_{2,2}$

(partial identities)

 $(x_{1,2})^{-1} = x_{2,1}$ (unique inverse)

- ► Inverse Semigroup (Semigroup): An unique inverse exists for every element. But, no unique identity (partial identities).
- SIS (\subset Semigroup): Semigroup version of the symmetric group S_k

$$\mathcal{S}_p^k \ (p=1,\cdots,k)$$

► $x_{a,b} \in \mathcal{S}_1^k$ maps a to b. $(a, b \in \{1, \dots, k\})$ Product rule: $x_{a,b} * x_{c,d} = \delta_{b,c} x_{a,d}$

$$x_{1,2} * x_{2,1} = x_{1,1},$$
 $x_{2,1} * x_{1,2} = x_{2,2}$

(partial identities)

 $(x_{1,2})^{-1} = x_{2,1}$ (unique inverse)

$$x_{a_1,a_2;b_1,b_2} \in \mathcal{S}_2^k$$
 etc, ...

- Inverse Semigroup (⊂ Semigroup):
 An unique inverse exists for every element.
 But, no unique identity (partial identities).
- ► SIS (\subset Semigroup): Semigroup version of the symmetric group S_k

$$\mathcal{S}_p^k \ (p=1,\cdots,k)$$

► $x_{a,b} \in \mathcal{S}_1^k$ maps a to b. $(a, b \in \{1, \dots, k\})$ Product rule: $x_{a,b} * x_{c,d} = \delta_{b,c} x_{a,d}$

$$x_{1,2} * x_{2,1} = x_{1,1},$$
 $x_{2,1} * x_{1,2} = x_{2,2}$

(partial identities)

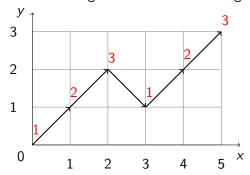
 $(x_{1,2})^{-1} = x_{2,1}$ (unique inverse)

▶ Change the spin d.o.f. as $|x_{a,b}\rangle$ with $a,b\in\{1,2,\cdots,k\}$.

▶
$$a < b$$
 case: 'up' \Leftrightarrow $a > b$ case: 'down' \Leftrightarrow $a = b$ case: 'flat' \Leftrightarrow $a = b$

- ▶ Change the spin d.o.f. as $|x_{a,b}\rangle$ with $a, b \in \{1, 2, \dots, k\}$.
- ► a < b case: 'up' \Leftrightarrow a > b a > b case: 'down' \Leftrightarrow a = b case: 'flat' \Leftrightarrow a = b
- We regard the configuration of adjacent sites $|(x_{a,b})_j\rangle |(x_{c,d})_{j+1}\rangle$ as a connected path for b=c. c.f.) Analogous to the product rule of Symmetric Inverse Semigroup (\mathcal{S}_1^k) : $x_{a,b}*x_{c,d}=\delta_{b,c}x_{a,d}$ a, b: semigroup indices
- ▶ Inner product: $\langle x_{a,b}|x_{c,d}\rangle = \delta_{a,c}\delta_{b,d}$
- ▶ Let us consider the k = 3 case.

▶ Maximum height is lower than the original Motzkin case.



Hamiltonian $H_{S31Motzkin} = H_{bulk} + H_{bulk,disc} + H_{bdy}$

► H_{bulk}: local interactions corresponding to the following moves:

$$(Down) \qquad \stackrel{\textbf{a}}{\longrightarrow} \qquad \stackrel{\textbf{b}}{\longrightarrow} \qquad (a > b)$$

$$(Up) \qquad \stackrel{\textbf{b}}{\longrightarrow} \qquad \sim \qquad \stackrel{\textbf{b}}{\longrightarrow} \qquad (a < b)$$

$$(Flat) \qquad \stackrel{\textbf{a}}{\longrightarrow} \qquad \sim \qquad \stackrel{\textbf{b}}{\longrightarrow} \qquad (a < b)$$

$$(Wedge) \qquad \stackrel{\textbf{3}}{\longrightarrow} \qquad \sim \qquad \stackrel{\textbf{3}}{\longrightarrow} \qquad \stackrel{\textbf{3}}{\longrightarrow} \qquad (a < b)$$

► *H*_{bulk,disc} lifts disconnected paths to excited states.

 $\Pi^{|\psi\rangle}$: projector to $|\psi\rangle$

$$H_{bulk,disc} = \sum_{j=1}^{2n-1} \sum_{a,b,c,d=1; b \neq c}^{3} \prod^{\left|(x_{a,b})_j,(x_{c,d})_{j+1}\right\rangle}$$

► *H*_{bulk,disc} lifts disconnected paths to excited states.

 $\Pi^{|\psi\rangle}$: projector to $|\psi\rangle$

$$H_{bulk,disc} = \sum_{j=1}^{2n-1} \sum_{a,b,c,d=1; b \neq c}^{3} \Pi^{\left|(x_{a,b})_j,(x_{c,d})_{j+1}\right\rangle}$$

$$H_{bdy} = \sum_{a>b} \prod^{|(x_{a,b})_1\rangle} + \sum_{a< b} \prod^{|(x_{a,b})_{2n}\rangle} + \prod^{|(x_{1,3})_1,(x_{3,2})_2,(x_{2,1})_3\rangle} + \prod^{|(x_{1,2})_{2n-2},(x_{2,3})_{2n-1},(x_{3,1})_{2n}\rangle}$$

The last 2 terms have no analog to the original Motzkin model.

▶ Ground states correspond to connected paths starting at (0,0), ending at (2n,0) and not entering y < 0. \mathcal{S}_1^3 MWs

- ▶ Ground states correspond to connected paths starting at (0,0), ending at (2n,0) and not entering y < 0. \mathcal{S}_1^3 MWs
- ► The ground states have 5 fold degeneracy according to the initial and finial semigroup indices:

(1,1), (1,2), (2,1), (2,2) and (3,3) sectors

The (3,3) sector is trivial, consisting of only one path:

 $x_{3,3}x_{3,3}\cdots x_{3,3}$.

- ► Ground states correspond to connected paths starting at (0,0), ending at (2n,0) and not entering y < 0. S_1^3 MWs
- ► The ground states have 5 fold degeneracy according to the initial and finial semigroup indices:

(1,1), (1,2), (2,1), (2,2) and (3,3) sectors

The (3,3) sector is trivial, consisting of only one path:

$$x_{3,3}x_{3,3}\cdots x_{3,3}$$
.

► The number of paths can be obtained by recursion relations. For length-n paths from the semigroup index a to b ($P_{n,a\rightarrow b}$),

$$P_{n,1\to 1} = x_{1,1}P_{n-1,1\to 1} + x_{1,2} \sum_{i=1}^{n-2} P_{i,2\to 2} x_{2,1}P_{n-2-i,1\to 1}$$

$$+x_{1,3} \sum_{i=1}^{n-2} P_{i,3\to 3} x_{3,1}P_{n-2-i,1\to 1}$$

$$+x_{1,3} \sum_{i=1}^{n-2} P_{i,3\to 3} x_{3,2}P_{n-2-i,2\to 1}, \quad \text{etc.}$$

Result

▶ The entanglement entropies $S_{A,1\rightarrow 1}$, $S_{A,1\rightarrow 2}$, $S_{A,2\rightarrow 1}$ and $S_{A,2\rightarrow 2}$ take the same form as in the case of the Motzkin model.

Logarithmic violation of the area law

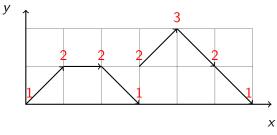
- ▶ The form of $p_n^{(h)} \sim \frac{(h+1)^2}{n^{3/2}} e^{-(\mathrm{const.})\frac{(h+1)^2}{n}}$ is universal.
- $S_{A,3\to 3}=0.$

SIS Motzkin model 7

Localization

[Padmanabhan, F.S., Korepin 2018]

▶ There are excited states corresponding to disconnected paths. Example) One such path in 2n = 6 case,

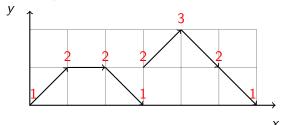


SIS Motzkin model 7

Localization

[Padmanabhan, F.S., Korepin 2018]

► There are excited states corresponding to disconnected paths. Example) One such path in 2n = 6 case,

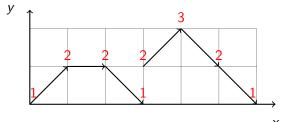


Corresponding excited state: $|P_{3,1\rightarrow1}\rangle\otimes |P_{3,2\rightarrow1}^{(1\rightarrow0)}\rangle$ Each connected component has no entanglement with other components. "2nd quantization" of paths

Localization

[Padmanabhan, F.S., Korepin 2018]

▶ There are excited states corresponding to disconnected paths. Example) One such path in 2n = 6 case,



Corresponding excited state: $|P_{3,1\rightarrow1}\rangle\otimes\left|P_{3,2\rightarrow1}^{(1\rightarrow0)}\right\rangle$

Each connected component has no entanglement with other components. "2nd quantization" of paths

 \Rightarrow 2pt connected correlation functions of local operators belonging to separate connected components vanish.

⇒ Localization!

Introduction

Motzkin spin model

Colored Motzkin model

SIS Motzkin mode

Colored SIS Motzkin model

Summary and discussion

The SIS \mathcal{S}_2^3

▶ 18 elements $x_{ab,cd}$ with $ab \in \{12, 23, 31\}$ and $cd \in \{12, 23, 31, 21, 32, 13\}$ satisfying

$$x_{ab,cd} * x_{ef,gh} = \delta_{c,e} \delta_{d,f} x_{ab,gh} + \delta_{c,f} \delta_{d,e} x_{ab,hg}.$$

• can be regarded as 2 sets of \mathcal{S}_1^3 .

 \Rightarrow color d.o.f.

The SIS S_2^3

▶ 18 elements $x_{ab,cd}$ with $ab \in \{12, 23, 31\}$ and $cd \in \{12, 23, 31, 21, 32, 13\}$ satisfying

$$x_{ab,cd} * x_{ef,gh} = \delta_{c,e} \delta_{d,f} x_{ab,gh} + \delta_{c,f} \delta_{d,e} x_{ab,hg}.$$

- ► can be regarded as 2 sets of S_1^3 . \Rightarrow color d.o.f.
- ▶ Spin variables: $x_{a,b}^s$ (s = 1, 2) (a, b = 1, 2, 3)
- ▶ The new moves (C moves) introduced to the Hamiltonian.

$$a \xrightarrow{1} a \sim a \xrightarrow{2} a$$

Hamiltonian: $H_{cS31Motzkin} = H_{bulk} + H_{bulk,disc} + H_{bdy}$

▶ In *H*_{bulk}, (Down), (Up) and (Flat) are essentially the same as before.

(Down)
$$a \xrightarrow{s} a \xrightarrow{s} b \sim a \xrightarrow{b} b \qquad (a > b)$$

$$(Up) a \xrightarrow{s} a \xrightarrow{s} b \sim a \qquad (a < b)$$
(Flat) $a \xrightarrow{s} a \xrightarrow{s} a \sim a \qquad (a < b)$

► Wedge move:

$$(Wedge) \qquad \begin{array}{c} 3 & s & s' \\ 1 & \\ \end{array} \qquad \sim \qquad \begin{array}{c} 3 & s & s' \\ 2 & \\ \end{array}$$

 $(\mathit{Cross})_{j,j+1} = \sum_{c} \left[\Pi^{\left| (x_{a,b}^1)_j, (x_{b,c}^2)_{j+1} \right\rangle} + \Pi^{\left| (x_{a,b}^2)_j, (x_{b,c}^1)_{j+1} \right\rangle} \right]$

forbids unmatched up and down steps in ground states.

$$\downarrow \downarrow$$

$$H_{bulk} = \mu \sum_{j=1}^{2n} C_j + \sum_{j=1}^{2n-1} [(Down)_{j,j+1} + (Up)_{j,j+1} + (Flat)_{j,j+1} + (Wedge)_{j,j+1} + (Cross)_{j,j+1}]$$

$$H_{bulk,disc} = \sum_{j=1}^{2n-1} \sum_{a,b,c,d=1; b \neq c}^{3} \sum_{s,t=1}^{2} \prod^{\left| (x_{a,b}^{s})_{j}, (x_{c,d}^{t})_{j+1} \right\rangle}$$

$$H_{bdy} = \sum_{a>b} \sum_{s=1}^{2} \prod^{|(x_{a,b}^{s})_{1}\rangle} + \sum_{a< b} \sum_{s=1}^{2} \prod^{|(x_{a,b}^{s})_{2n}\rangle} + \sum_{s,t=1}^{2} \prod^{|(x_{1,3}^{s})_{1},(x_{3,2}^{s})_{2},(x_{2,1}^{t})_{3}\rangle} + \sum_{s,t=1}^{2} \prod^{|(x_{1,3}^{s})_{2n-2},(x_{2,3}^{t})_{2n-1},(x_{3,1}^{t})_{2n}\rangle}$$

- \triangleright 5 ground states of (1,1), (1,2), (2,1), (2,2), (3,3) sectors
- ▶ Quantum phase transition between $\mu > 0$ and $\mu = 0$ in the 4 sectors except (3,3).
 - ▶ For μ > 0,

$$S_A = (2 \ln 2) \sqrt{\frac{2\sigma n}{\pi}} + \frac{1}{2} \ln n + \frac{1}{2} \ln(2\pi\sigma) + \gamma - \frac{1}{2} + \ln \frac{3}{2^{1/3}}$$

with
$$\sigma \equiv \frac{\sqrt{2}-1}{9\sqrt{2}}$$
.

For $\mu = 0$, colors 1 and 2 decouple.

$$S_A \propto \ln n$$
.

Introduction

Motzkin spin mode

Colored Motzkin model

SIS Motzkin mode

Colored SIS Motzkin mode

Summary and discussion

Summary

We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.
 - Quantum phase transitions In colored case (S_2^3) , \sqrt{n} v.s. In n for S_A (In uncolored case (S_1^3) , log. violation v.s. area law O(1) for S_A)

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.
 - ▶ Quantum phase transitions In colored case (S_2^3) , \sqrt{n} v.s. In n for S_A (In uncolored case (S_1^3) , log. violation v.s. area law O(1) for S_A)
- Semigroup extension of the Fredkin model

[Padmanabhan, F.S., Korepin 2018]

Summary

- We have reviewed the (colored) Motzkin spin models which yield large entanglement entropy proportional to the square root of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.
 - ▶ Quantum phase transitions In colored case (S_2^3) , \sqrt{n} v.s. In n for S_A (In uncolored case (S_1^3) , log. violation v.s. area law O(1) for S_A)
- Semigroup extension of the Fredkin model

[Padmanabhan, F.S., Korepin 2018]

- ► As a feature of the extended models, Anderson-like localization occurs in excited states corresponding to disconnected paths.
 - "2nd quantized paths".

Future directions

Continuum limit? Field theory interpretation?

(In particular, for colored case)

[Chen, Fradkin, Witczak-Krempa 2017]

Future directions

Continuum limit? Field theory interpretation? (In particular, for colored case)

[Chen, Fradkin, Witczak-Krempa 2017]

▶ Holography? Application to quantum gravity or black holes?

[Alexander, Klich 2018]

▶ Higher-dimensional models (d = 2, 3, ...)?

Future directions

- ► Continuum limit? Field theory interpretation?

 (In particular, for colored case)

 [Chen, Fradkin, Witczak-Krempa 2017]
- ► Holography? Application to quantum gravity or black holes?

 [Alexander, Klich 2018]
- ▶ Higher-dimensional models (d = 2, 3, ...)?

Thank you very much for your attention!

In terms of S = 1 spin matrices

$$S_z = \begin{pmatrix} 1 & & \\ & 0 & \\ & & -1 \end{pmatrix}, \quad S_\pm \equiv \frac{1}{\sqrt{2}} (S_x \pm i S_y) = \begin{pmatrix} & 1 & \\ & & 1 \end{pmatrix}, \, \begin{pmatrix} 1 & & \\ & 1 & \end{pmatrix},$$

$$H_{bulk} = \frac{1}{2} \sum_{j=1}^{2n-1} \left[1_{j} 1_{j+1} - \frac{1}{4} S_{zj} S_{zj+1} - \frac{1}{4} S_{zj}^{2} S_{zj+1} + \frac{1}{4} S_{zj} S_{zj+1}^{2} - \frac{3}{4} S_{zj}^{2} S_{zj+1}^{2} + S_{+j} (S_{z} S_{-})_{j+1} + S_{-j} (S_{+} S_{z})_{j+1} - (S_{-} S_{z})_{j} S_{+j+1} - (S_{z} S_{+})_{j} (S_{z} S_{-})_{j+1} - (S_{z} S_{z})_{j} (S_{+} S_{z})_{j+1} - (S_{z} S_{+})_{j} (S_{z} S_{-})_{j+1} \right],$$

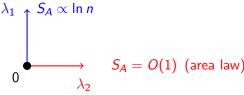
$$H_{bdy} = \frac{1}{2} (S_{z}^{2} - S_{z})_{1} + \frac{1}{2} (S_{z}^{2} + S_{z})_{2n}$$

Quartic spin interactions

▶ By adding the balancing term to the Hamiltonian

$$\frac{\lambda_2}{\lambda_2} \sum_{j=1}^{2n-1} \left[\prod^{|(x_{1,3})_j,(x_{3,2})_{j+1}\rangle} + \prod^{|(x_{2,3})_j,(x_{3,1})_{j+1}\rangle} \right]$$

with λ_1 put to the term \sim \sim \sim \sim \sim , quantum phase transition takes place in the 4 sectors except (3,3):



 $\lambda_1, \lambda_2 > 0$ is not frustration free (here, we do not consider).