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Ising model on 2d dynamical triangulations (DT) 


(1) Continuous phase transition at non-zero temperature Tc.  


(2) Physics around the critical point is described by  


2d gravity coupled to Majorana fermion  


[Kazakov, 1986]


Reconsider criticality of Ising model on 2d DT


(1) Introduce a “loop-counting’’ parameter θ.  


(2) Tuning θ, one can reduce Tc(θ) to absolute zero.  


(3) Continuum theories around absolute zero are NOT  


2d gravity coupled to Majorana fermions.  


[YS, Tanaka, 2017]
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Understand 

the difference between the two!!


New 1-parameter 

family of continuum

theories! 


[YS, Tanaka, 2017]




Outline 


(1) Ising model on 2d DT


(2) zero-temperature vs. finite temperature


(3) Discussion




Ising model on 2d DT




Ising model on honeycomb lattice (G):


Ising spin:


�i = ±1

Exactly solved in the thermodynamic limit:

[Weiner, 1950, Houtappel, 1950]


(1) 2nd order phase transition at 


(2) Physics around βc described by


2d Majorana fermion


ZG(�) =
X

�

Y

<i,j>

e��i�j

� = �c 6= 1



Ising model on a planar graph (w/ coordination number = 3) (G’):


Summing all planar graphs (w/ coordination number = 3),  


one can construct a solvable model (Ising model on 2d DT).

[Kazakov, 1986]
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Ising model on 2d dynamical triangulations (DT):
 [Kazakov, 1986]


Z(�, g3) =
X

G

1

|Aut(G)|g
n(G)
3 ZG(�)

Ising model on G


n(G) := #(vertices in G)

g3 : weight of a vertex




Ising model on 2d dynamical triangulations (DT):
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gn3Zn(�) Partition function




Ising model on 2d dynamical triangulations (DT):
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=:
X

n

gn3Zn(�)

g3 = e�µ Fn(�) := logZn(�)

=
X

n

e�n(µ� 1
nFn(�))

Z
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Radius of convergence, 
(g3)c = e�µc

µc := lim
n!1

1

n
Fn(�)



Average of #(vertices) goes to infinity as μ→ μc:


Free energy (per vertex) of Ising model dressed by DT: 


Thermodynamic limit of dynamical triangulations (DT):


µ ! µc or


f(β) becomes singular at β=βc 


Critical point of Ising model on 2d DT 


hni := g3
@

@g3
logZ(�, g3)

����
µ=µc

= 1
(g3 = e�µ)

g3 ! (g3)c = e�µc

f(�) = � 1

�
µc(�) = � 1

�
lim
n!1

1

n
logZn(�)



and 	 w/		 kept fixed 	

Continuum limit of dynamical triangulations (DT):


µ ! µc " ! 0 A = hni"2

where ε is the lattice spacing and A is a physical area.

" "

"Continuum theories


(1) 2d pure gravity at β≠βc


(2) 2d gravity coupled to fermions at β=βc (≠∞)




Vertices:
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�
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[Kazakov, 1986]


where
 weight of vertex


Definition via Hermitian NxN two-matrix model:


ZN (�, g3) =

Z
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[Kazakov, 1986]


where


Propagators:


nearest-neighbor interactions


h'+'+i =
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Definition via Hermitian NxN two-matrix model:
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In the large-N limit, planar graphs survive. 


h=0 for planar

h>0 for non-planar
⇠ N2�2h

[Kazakov, 1986]
Definition via Hermitian NxN two-matrix model:


where
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[Kazakov, 1986]


where


Define Ising model on DT via the matrix model:


Definition via Hermitian NxN two-matrix model:


ZN (�, g3) =

Z
D'+D'�e

�NtrU('+,'�)

Z(�, g3) = lim
N!1

1

N2
log

✓
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ZN (�, 0)
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(G: a connected planar graph)
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Zero-temperature 

v.s


Finite temperature




[Kazakov, 1986]
Kazakov’s potential:
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[YS, Tanaka, 2017]
Our potential:


cdt = e�2�dtwhere


where
 c = e�2�

Skeleton graph


Trees are attached!
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Our potential:


cdt = e�2�dtwhere


where
 c = e�2�

Skeleton graph


⇠ ✓#(loops)�2
When θ<<1, 

trees become dominant
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Our potential:


zero temperature


finite temperature


(�dt)
�1
c 6= 0
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Remove the linear terms,
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p
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2g

Trees are integrated out:  




Normalize quadratic terms,
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Tree graphs are dominant


Critical line  


��1

g1/2

Skeleton graphs are dominant 
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Using the relation between Kazakov’s  and our 
parametrisations, in the continuum limit 


g = gc(✓)(1� ⇤"2) ✓ = ⇥↵"
↵ (0 < ↵ < 3)

one can show   


gdt
(gdt)c

=
g

gc

✓
1� 52/3

14 +
p
7

⇤

⇥2/3
↵

"2�
2
3↵ + · · ·

◆3/2

If α = 3, 

one cannot reach Kazakov’s critical point    




Discussion




What is α?


Diff 

invariant


Diff  is

“broken”


↵ = 0 ↵ = 3

✓ = ⇥↵"
↵

(0 < ↵ < 3)

Finite temperature
 Zero temperature


Dynamical critical exponent, z:


x ! bx ⌧ ! bz⌧

Is “z” related to “α” ?


Discussion part was intentionally deleted!!



