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Ising model on 2d dynamical triangulations (DT) 

(1) Continuous phase transition at non-zero temperature Tc.  

(2) Physics around the critical point is described by  

2d gravity coupled to Majorana fermion  

[Kazakov, 1986]

Reconsider criticality of Ising model on 2d DT

(1) Introduce a “loop-counting’’ parameter θ.  

(2) Tuning θ, one can reduce Tc(θ) to absolute zero.  

(3) Continuum theories around absolute zero are NOT  

2d gravity coupled to Majorana fermions.  

[YS, Tanaka, 2017]
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(3) Continuum theories around absolute zero are NOT  

2d gravity coupled to Majorana fermions.  

[YS, Ambjorn]

Understand 
the difference between the two!!

New 1-parameter 
family of continuum
theories! 

[YS, Tanaka, 2017]
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Ising model on 2d DT



Ising model on honeycomb lattice (G):

Ising spin:

�i = ±1

Exactly solved in the thermodynamic limit:
[Weiner, 1950, Houtappel, 1950]

(1) 2nd order phase transition at 

(2) Physics around βc described by

2d Majorana fermion

ZG(�) =
X

�

Y

<i,j>

e��i�j

� = �c 6= 1



Ising model on a planar graph (w/ coordination number = 3) (G’):

Summing all planar graphs (w/ coordination number = 3),  

one can construct a solvable model (Ising model on 2d DT).
[Kazakov, 1986]

ZG0(�) =
X

�

Y

<i,j>

e��i�j

{G,G0, G00, · · · }
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Ising model on 2d dynamical triangulations (DT): [Kazakov, 1986]

Z(�, g3) =
X

G

1

|Aut(G)|g
n(G)
3 ZG(�)

Ising model on G

n(G) := #(vertices in G)
g3 : weight of a vertex
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gn3Zn(�) Partition function



Ising model on 2d dynamical triangulations (DT): [Kazakov, 1986]

Z(�, g3) =
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G
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|Aut(G)|g
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=:
X

n

gn3Zn(�)

g3 = e�µ Fn(�) := logZn(�)

=
X

n

e�n(µ� 1
nFn(�))
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Radius of convergence, (g3)c = e�µc

µc := lim
n!1
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n
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Average of #(vertices) goes to infinity as μ→ μc:

Free energy (per vertex) of Ising model dressed by DT: 

Thermodynamic limit of dynamical triangulations (DT):

µ ! µc or

f(β) becomes singular at β=βc 

Critical point of Ising model on 2d DT 

hni := g3
@

@g3
logZ(�, g3)

����
µ=µc

= 1
(g3 = e�µ)

g3 ! (g3)c = e�µc

f(�) = � 1

�
µc(�) = � 1

�
lim
n!1

1

n
logZn(�)



and 	 w/		 kept fixed 	

Continuum limit of dynamical triangulations (DT):

µ ! µc " ! 0 A = hni"2

where ε is the lattice spacing and A is a physical area.
" "

"Continuum theories

(1) 2d pure gravity at β≠βc

(2) 2d gravity coupled to fermions at β=βc (≠∞)



Vertices:
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[Kazakov, 1986]

where weight of vertex

Definition via Hermitian NxN two-matrix model:

ZN (�, g3) =

Z
D'+D'�e

�NtrU('+,'�)

eU('+,'�) =
e�

sinh(2�)
('2

+ + '2
� � 2e�2�'+'�)�

g3
3
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+ + '3
�)



[Kazakov, 1986]

where

Propagators:

nearest-neighbor interactions

h'+'+i =
1

N
e��+�+ ⇠

h'�'+i =
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Definition via Hermitian NxN two-matrix model:

ZN (�, g3) =
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In the large-N limit, planar graphs survive. 

h=0 for planar
h>0 for non-planar⇠ N2�2h

[Kazakov, 1986]Definition via Hermitian NxN two-matrix model:

where
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[Kazakov, 1986]

where

Define Ising model on DT via the matrix model:

Definition via Hermitian NxN two-matrix model:

ZN (�, g3) =

Z
D'+D'�e

�NtrU('+,'�)

Z(�, g3) = lim
N!1

1

N2
log

✓
ZN (�, g3)

ZN (�, 0)

◆

(G: a connected planar graph)

=
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Zero-temperature 
v.s

Finite temperature



[Kazakov, 1986]Kazakov’s potential:

U (2)( +, �) =
1

2
( 2
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3
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[YS, Tanaka, 2017]Our potential:

cdt = e�2�dtwhere

where c = e�2�

Skeleton graph

Trees are attached!
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[YS, Tanaka, 2017]Our potential:

cdt = e�2�dtwhere

where c = e�2�

Skeleton graph

⇠ ✓#(loops)�2
When θ<<1, 
trees become dominant
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[YS, Tanaka, 2017]Our potential:

zero temperature

finite temperature

(�dt)
�1
c 6= 0

lim
✓!0

��1
c (✓) = 0

✓ ! 0
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'± = '̃± + Ztree(g, c)
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Remove the linear terms,

Ztree =
1� c�

p
(1� c)2 � 4g2

2g

Trees are integrated out:  



Normalize quadratic terms,
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Tree graphs are dominant

Critical line  

��1

g1/2

Skeleton graphs are dominant 



Critical line  
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Continuum limit  
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Using the relation between Kazakov’s  and our 
parametrisations, in the continuum limit 

g = gc(✓)(1� ⇤"2) ✓ = ⇥↵"
↵ (0 < ↵ < 3)

one can show   

gdt
(gdt)c

=
g

gc

✓
1� 52/3

14 +
p
7

⇤

⇥2/3
↵

"2�
2
3↵ + · · ·

◆3/2

If α = 3, 
one cannot reach Kazakov’s critical point    



Discussion



What is α?

Diff 
invariant

Diff  is
“broken”

↵ = 0 ↵ = 3

✓ = ⇥↵"
↵

(0 < ↵ < 3)

Finite temperature Zero temperature

Dynamical critical exponent, z:

x ! bx ⌧ ! bz⌧

Is “z” related to “α” ?

Discussion part was intentionally deleted!!


