Understanding zero-temperature eriticality of Ising model on 2d dynamical triangulations

Yuki Sato

(Nagoya U)
Sep. 10, 2018

YS and T. Tanaka, Phys. Rev. D98 (2018) no. 2
Work in progress w/ J.Ambjorn
@ Discrete Approaches to the Dynamics of Fields and Space-Time, Tohoku U
(1) Continuous phase transition at non-zero temperature T_{c}.
(2) Physics around the critical point is described by 2d gravity coupled to Majorana fermion

Reconsider criticality of Ising model on 2d DT [YS, Tanaka, 2017]
(1) Introduce a "loop-counting" parameter θ.
(2) Tuning θ, one can reduce $\mathrm{T}_{\mathrm{c}}(\theta)$ to absolute zero.
(3) Continuum theories around absolute zero are NOT 2d gravity coupled to Majorana fermions.

Ising model on 2d dynamical triangulations (DT) [Kazakov, 1986]
(1) Continuous phase transition at non-zero temperature T_{c}.
(2) Physics around the critical point is described by 2d gravity coupled to Majorana fermion

```
Understand
the difference between the two!!
[YS,Ambjorn]
```

Reconsider criticality of Ising model on 2d DT [YS, Tanaka, 2017]
(1) Introduce a "loop-counting" parameter θ.
(2) Tuning θ, one can reduce $\mathrm{T}_{\mathrm{c}}(\theta)$ to absolute zero.
(3) Continuum theories around absolute zero are NOT 2d gravity coupled to Majorana fermions.
(1) Continuous phase transition at non-zero temperature T_{c}.
(2) Physics around the critical point is described by 2d gravity coupled to Majorana fermion

New 1-parameter family of continuum theories!

Understand the difference between the two!!
[YS, Ambjorn]

Reconsider criticality of Ising model on 2d DT [YS, Tanaka, 2017]
(1) Introduce a "loop-counting" parameter θ.
(2) Tuning θ, one can reduce $\mathrm{T}_{\mathrm{c}}(\theta)$ to absolute zero.
(3) Continuum theories around absolute zero are NOT 2d gravity coupled to Majorana fermions.

Outline

(1) Ising model on 2d DT
(2) zero-temperature vs. finite temperature
(3) Discussion

Ising model on honeycomb lattice (G):

$$
Z_{G}(\beta)=\sum_{\sigma} \prod_{<i, j>} e^{\beta \sigma_{i} \sigma_{j}} \quad \begin{aligned}
& \text { Ising spin: } \\
& \sigma_{i}= \pm 1
\end{aligned}
$$

Exactly solved in the thermodynamic limit:
[Weiner, 1950, Houtappel, 1950]
(1) $2^{\text {nd }}$ order phase transition at

$$
\beta=\beta_{c} \neq \infty
$$

(2) Physics around β_{c} described by 2d Majorana fermion

Ising model on a planar graph $(\mathrm{w} /$ coordination number $=3)\left(\mathrm{G}^{\prime}\right)$:

$$
Z_{G^{\prime}}(\beta)=\sum_{\sigma} \prod_{<i, j>} e^{\beta \sigma_{i} \sigma_{j}}
$$

Summing all planar graphs ($\mathrm{w} /$ coordination number $=3$),

$$
\left\{G, G^{\prime}, G^{\prime \prime}, \cdots\right\}
$$

one can construct a solvable model (Ising model on 2d DT).

Ising model on a planar graph $(\mathrm{w} /$ coordination number $=3)\left(\mathrm{G}^{\prime}\right)$:

$$
Z_{G^{\prime}}(\beta)=\sum_{\sigma} \prod_{<i, j>} e^{\beta \sigma_{i} \sigma_{j}}
$$

Summing all planar graphs ($\mathrm{w} /$ coordination number $=3$),

$$
\left\{G, G^{\prime}, G^{\prime \prime}, \cdots\right\}
$$

one can construct a solvable model (Ising model on 2d DT).

Ising model on 2d dynamical triangulations (DT): [Kazakov, 1986]

$$
Z\left(\beta, g_{3}\right)=\sum_{G} \frac{1}{|A u t(G)|} g_{3}^{n(G)} \underbrace{Z_{G}(\beta)}_{\text {Ising model on G }}
$$

g_{3} : weight of a vertex $\mathrm{n}(\mathrm{G}):=$ \#(vertices in G)

Ising model on 2d dynamical triangulations (DT): [Kazakov, 1986]

$$
\begin{aligned}
Z\left(\beta, g_{3}\right) & =\left.\sum_{G} \frac{1}{|\operatorname{Aut}(G)|}\right|^{n(G)} Z_{G}(\beta) \\
& =: \sum_{n} g_{3}^{n} \underline{Z n}_{n}(\beta) \mid \text { Partition function }
\end{aligned}
$$

Ising model on 2d dynamical triangulations (DT): [Kazakov, 1986]

$$
\begin{aligned}
Z\left(\beta, g_{3}\right)= & \sum_{G} \frac{1}{|\operatorname{Aut}(G)|} g_{3}^{n(G)} Z_{G}(\beta) \\
= & : \sum_{n} g_{3}^{n} Z_{n}(\beta) \\
& g_{3}=e^{-\mu} \quad F_{n}(\beta):=\log Z_{n}(\beta) \\
= & \sum_{n} e^{-n\left(\mu-\frac{1}{n} F_{n}(\beta)\right)}
\end{aligned}
$$

Radius of convergence, $\left(g_{3}\right)_{c}=e^{-\mu_{c}}$

$$
\mu_{c}:=\lim _{n \rightarrow \infty} \frac{1}{n} F_{n}(\beta)
$$

Average of \#(vertices) goes to infinity as $\mu \rightarrow \mu_{c}$:

$$
\langle n\rangle:=\left.g_{3} \frac{\partial}{\partial g_{3}} \log Z\left(\beta, g_{3}\right)\right|_{\mu=\mu_{c}}=\infty \quad\left(g_{3}=e^{-\mu}\right)
$$

Thermodynamic limit of dynamical triangulations (DT):

$$
\mu \rightarrow \mu_{c} \quad \text { or } \quad g_{3} \rightarrow\left(g_{3}\right)_{c}=e^{-\mu_{c}}
$$

Free energy (per vertex) of Ising model dressed by DT:

$$
f(\beta)=-\frac{1}{\beta} \mu_{c}(\beta)=-\frac{1}{\beta} \lim _{n \rightarrow \infty} \frac{1}{n} \log Z_{n}(\beta)
$$

$\boldsymbol{f}(\beta)$ becomes singular at $\beta=\beta_{c}$

\longrightarrow Critical point of Ising model on 2d DT

Continuum limit of dynamical triangulations (DT):

$$
\mu \rightarrow \mu_{c} \text { and } \varepsilon \rightarrow 0 \quad \text { w/ } A=\langle n\rangle \varepsilon^{2} \quad \text { kept fixed }
$$

where ε is the lattice spacing and A is a physical area. Continuum theories

(1) Id pure gravity at $\beta \neq \beta$ 。
(2) ad gravity coupled to fermions at $\beta=\beta_{\mathrm{c}}(\neq \infty)$

Definition via Hermitian NxN two-matrix model: [Kazakov, 1986]

$$
Z_{N}\left(\beta, g_{3}\right)=\int D \varphi_{+} D \varphi_{-} e^{-N \operatorname{tr} U\left(\varphi_{+}, \varphi_{-}\right)}
$$

where
weight of vertex
$U\left(\varphi_{+}, \varphi_{-}\right)=\frac{e^{\beta}}{\sinh (2 \beta)}\left(\varphi_{+}^{2}+\varphi_{-}^{2}-2 e^{-2 \beta} \varphi_{+} \varphi_{-}\right)-\frac{\varphi_{3}}{3}\left(\varphi_{+}^{3}+\varphi_{-}^{3}\right)$

Vertices:
$\operatorname{tr}\left(\varphi_{+}^{3}\right) \sim$

$\operatorname{tr}\left(\varphi_{-}^{3}\right) \sim$

Definition via Hermitian NxN two-matrix model: [Kazakov, 1986]

$$
Z_{N}\left(\beta, g_{3}\right)=\int D \varphi_{+} D \varphi_{-} e^{-N \operatorname{tr} U\left(\varphi_{+}, \varphi_{-}\right)}
$$

where nearest-neighborinteractions

$$
U\left(\varphi_{+}, \varphi_{-}\right)=\frac{e^{\beta}}{\sinh (2 \beta)}\left(\varphi_{+}^{2}+\varphi_{-}^{2}-2 e^{-2 \beta} \varphi_{+} \varphi_{-}\right)-\frac{g_{3}}{3}\left(\varphi_{+}^{3}+\varphi_{-}^{3}\right)
$$

Propagators:

$$
\begin{aligned}
\left\langle\varphi_{+} \varphi_{+}\right\rangle & =\frac{1}{N} e^{\beta \sigma_{+} \sigma_{+}} \sim \neq \lambda \\
\left\langle\varphi_{-} \varphi_{+}\right\rangle & =\frac{1}{N} e^{\beta \sigma_{-} \sigma_{+}} \sim \downarrow \\
\left\langle\varphi_{+} \varphi_{-}\right\rangle & =\frac{1}{N} e^{\beta \sigma_{+} \sigma_{-}} \sim \neq \downarrow \\
\left\langle\varphi_{-} \varphi_{-}\right\rangle & =\frac{1}{N} e^{\beta \sigma_{-} \sigma_{-}} \sim \downarrow
\end{aligned}
$$

Definition via Hermitian NxN two-matrix model: [Kazakov, 1986]

$$
Z_{N}\left(\beta, g_{3}\right)=\int D \varphi_{+} D \varphi_{-} e^{-N \operatorname{tr} U\left(\varphi_{+}, \varphi_{-}\right)}
$$

where

$$
U\left(\varphi_{+}, \varphi_{-}\right)=\frac{e^{\beta}}{\sinh (2 \beta)}\left(\varphi_{+}^{2}+\varphi_{-}^{2}-2 e^{-2 \beta} \varphi_{+} \varphi_{-}\right)-\frac{g_{3}}{3}\left(\varphi_{+}^{3}+\varphi_{-}^{3}\right)
$$

Definition via Hermitian NxN two-matrix model: [Kazakov, 1986]

$$
Z_{N}\left(\beta, g_{3}\right)=\int D \varphi_{+} D \varphi_{-} e^{-N \operatorname{tr} U\left(\varphi_{+}, \varphi_{-}\right)}
$$

where

$$
U\left(\varphi_{+}, \varphi_{-}\right)=\frac{e^{\beta}}{\sinh (2 \beta)}\left(\varphi_{+}^{2}+\varphi_{-}^{2}-2 e^{-2 \beta} \varphi_{+} \varphi_{-}\right)-\frac{g_{3}}{3}\left(\varphi_{+}^{3}+\varphi_{-}^{3}\right)
$$

Define Ising model on DT via the matrix model:

$$
Z\left(\beta, g_{3}\right)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \log \left(\frac{Z_{N}\left(\beta, g_{3}\right)}{Z_{N}(\beta, 0)}\right)
$$

$$
=\sum_{G} \frac{1}{|A u t(G)|} g_{3}^{n(G)} Z_{G}(\beta)
$$

Zero-temperature v. s
 Finite temperature

Kazakov's potential: [Kazakov, 1986]
$U^{(2)}\left(\psi_{+}, \psi_{-}\right)=\frac{1}{2}\left(\psi_{+}^{2}+\psi_{-}^{2}-2 c_{\mathrm{dt}} \psi_{+} \psi_{-}\right)-\frac{g_{\mathrm{dt}}}{3}\left(\psi_{+}^{3}+\psi_{-}^{3}\right)$
where $c_{\mathrm{dt}}=e^{-2 \beta_{\mathrm{dt}}}$

Our potential: [YS,Tanaka, 2017]

Skeleton graph
$U^{(0)}\left(\varphi_{+}, \varphi_{-}\right)=\frac{1}{\theta}\left(\frac{1}{2}\left(\varphi_{+}^{2}+\varphi_{-}^{2}-2 c \varphi_{+} \varphi_{-}\right)-\underline{g\left(\varphi_{-}+\varphi_{-}\right)}-\frac{g}{3}\left(\varphi_{+}^{3}+\varphi_{-}^{3}\right)\right)$
where $c=e^{-2 \beta}$

Kazakov's potential: [Kazakov, 1986]
$U^{(2)}\left(\psi_{+}, \psi_{-}\right)=\frac{1}{2}\left(\psi_{+}^{2}+\psi_{-}^{2}-2 c_{\mathrm{dt}} \psi_{+} \psi_{-}\right)-\frac{g_{\mathrm{dt}}}{3}\left(\psi_{+}^{3}+\psi_{-}^{3}\right)$
where $c_{\mathrm{dt}}=e^{-2 \beta_{\mathrm{dt}}}$

Our potential: [YS,Tanaka, 2017]

Skeleton graph
$U^{(0)}\left(\varphi_{+}, \varphi_{-}\right)=\stackrel{1}{\Theta}\left(\frac{1}{2}\left(\varphi_{+}^{2}+\varphi_{-}^{2}-2 c \varphi_{+} \varphi_{-}\right)-g\left(\varphi_{-}+\varphi_{-}\right)-\frac{g}{3}\left(\varphi_{+}^{3}+\varphi_{-}^{3}\right)\right)$
where $c=e^{-2 \beta}$
when $\theta \ll 1$,
trees become dominant

$\sim \underline{\theta^{\#(\text { loops })-2}}$

Kazakov's potential: [Kazakov, 1986]
$U^{(2)}\left(\psi_{+}, \psi_{-}\right)=\frac{1}{2}\left(\psi_{+}^{2}+\psi_{-}^{2}-2 c_{\mathrm{dt}} \psi_{+} \psi_{-}\right)-\frac{g_{\mathrm{dt}}}{3}\left(\psi_{+}^{3}+\psi_{-}^{3}\right)$ finite temperature

$$
\left(\beta_{\mathrm{dt}}\right)_{c}^{-1} \neq 0
$$

Our potential: [YS,Tanaka, 2017]

$U^{(0)}\left(\varphi_{+}, \varphi_{-}\right)=\frac{1}{\theta}\left(\frac{1}{2}\left(\varphi_{+}^{2}+\varphi_{-}^{2}-2 c \varphi_{+} \varphi_{-}\right)-g\left(\varphi_{-}+\varphi_{-}\right)-\frac{g}{3}\left(\varphi_{+}^{3}+\varphi_{-}^{3}\right)\right)$
zero temperature

$$
\lim _{\theta \rightarrow 0} \beta_{c}^{-1}(\theta)=0
$$

Remove the linear terms,

$$
\left.\begin{array}{rl}
U^{(0)}\left(\varphi_{+}, \varphi_{-}\right) & =\frac{1}{\theta}\left(\frac{1}{2}\left(\varphi_{+}^{2}+\varphi_{-}^{2}-2 c \varphi_{+} \varphi_{-}\right)-g\left(\varphi_{-}+\varphi_{-}\right)-\frac{g}{3}\left(\varphi_{+}^{3}+\varphi_{-}^{3}\right)\right) \\
\downarrow & \varphi_{ \pm}
\end{array}=\tilde{\varphi}_{ \pm}+Z_{\text {tree }}(g, c) \quad Z_{\text {tree }}=\frac{1-c-\sqrt{(1-c)^{2}-4 g^{2}}}{2 g}\right) \quad \begin{aligned}
U^{(1)}\left(\tilde{\varphi}_{+}, \tilde{\varphi}_{-}\right) & =\frac{1}{\theta}\left(\frac{1-2 g Z_{\text {tree }}}{2}\left(\tilde{\varphi}_{+}^{2}+\tilde{\varphi}_{-}^{2}\right)-c \tilde{\varphi}_{+} \tilde{\varphi}_{-}-\frac{g}{3}\left(\tilde{\varphi}_{+}^{3}+\tilde{\varphi}_{-}^{3}\right)\right)
\end{aligned}
$$

Trees are integrated out:

Normalize quadratic terms,

$$
\begin{aligned}
& U^{(0)}\left(\varphi_{+}, \varphi_{-}\right)=\frac{1}{\theta}\left(\frac{1}{2}\left(\varphi_{+}^{2}+\varphi_{-}^{2}-2 c \varphi_{+} \varphi_{-}\right)-g\left(\varphi_{-}+\varphi_{-}\right)-\frac{g}{3}\left(\varphi_{+}^{3}+\varphi_{-}^{3}\right)\right) \\
& \varphi_{ \pm}=\tilde{\varphi}_{ \pm}+Z_{\text {tree }}(g, c) \\
& U^{(1)}\left(\tilde{\varphi}_{+}, \tilde{\varphi}_{-}\right)=\frac{1}{\theta}\left(\frac{1-2 g Z_{\text {tree }}}{2}\left(\tilde{\varphi}_{+}^{2}+\tilde{\varphi}_{-}^{2}\right)-c \tilde{\varphi}_{+} \tilde{\varphi}_{-}-\frac{g}{3}\left(\tilde{\varphi}_{+}^{3}+\tilde{\varphi}_{-}^{3}\right)\right) \\
& \\
& \tilde{\varphi}_{ \pm}=\sqrt{\frac{\theta}{1-2 g Z_{\text {tree }}} \psi_{ \pm}} \\
& U^{(2)}\left(\psi_{+}, \psi_{-}\right)=\frac{1}{2}\left(\psi_{+}^{2}+\psi_{-}^{2}-2 c_{\mathrm{dt}} \psi_{+} \psi_{-}\right)-\frac{g_{\mathrm{dt}}}{3}\left(\psi_{+}^{3}+\psi_{-}^{3}\right)
\end{aligned}
$$

$$
\text { where } c_{\mathrm{dt}}:=\frac{c}{1-2 g Z_{\text {tree }}(g, c)} \quad g_{\mathrm{dt}}:=\frac{\theta^{1 / 2} g}{\left(1-2 g Z_{\text {tree }(g, c)}\right)^{3 / 2}}
$$

Critical line

Skeleton graphs are dominant

Tree graphs are dominant

Critical line

Continuum limit

$g \rightarrow g_{c}(\theta) \quad \& \quad \varepsilon \rightarrow 0$
w/ $\langle n\rangle \varepsilon^{2}$ kept fixed
$\langle n\rangle \sim \frac{1}{g_{c}(\theta)-g}$

$$
g=g_{c}(\theta)\left(1-\Lambda \varepsilon^{2}\right)
$$

$\left\langle n_{\text {tree }}\right\rangle \sim \mathcal{O}(1)$

Critical line

Continuum limit

$g \rightarrow g_{c}(\theta) \quad \& \quad \varepsilon \rightarrow 0$
w/ $\langle n\rangle \varepsilon^{2}$ kept fixed
$\langle n\rangle \sim \frac{1}{g_{c}(\theta)-g}$
$g=g_{c}(\theta)\left(1-\Lambda \varepsilon^{2}\right)$
$\theta=\Theta \varepsilon^{3}$
$\left\langle n_{\text {skel }}\right\rangle \sim \mathcal{O}(1) \quad\left\langle n_{\text {tree }}\right\rangle \sim \frac{1}{\varepsilon^{2}}$

Critical line

Continuum limit

$$
g \rightarrow g_{c}(\theta) \quad \& \quad \varepsilon \rightarrow 0
$$

$$
\mathrm{w} /\langle n\rangle \varepsilon^{2} \text { kept fixed }
$$

$$
\langle n\rangle \sim \frac{1}{g_{c}(\theta)-g}
$$

$$
\begin{gathered}
g=g_{c}(\theta)\left(1-\Lambda \varepsilon^{2}\right) \\
\theta=\Theta_{\alpha} \varepsilon^{\alpha}(0<\alpha<3) \\
\left\langle n_{\text {skel }}\right\rangle \sim \frac{1}{\varepsilon^{2-\frac{2}{3} \alpha}} \quad\left\langle n_{\text {tree }}\right\rangle \sim \frac{1}{\varepsilon^{\frac{2}{3} \alpha}}
\end{gathered}
$$

Using the relation between Kazakov's and our parametrisations, in the continuum limit

$$
g=g_{c}(\theta)\left(1-\Lambda \varepsilon^{2}\right) \quad \theta=\Theta_{\alpha} \varepsilon^{\alpha} \quad(0<\alpha<3)
$$

one can show

$$
\frac{g_{\mathrm{dt}}}{\left(g_{\mathrm{dt}}\right)_{c}}=\frac{g}{g_{c}}\left(1-\frac{5^{2 / 3}}{14+\sqrt{7}} \frac{\Lambda}{\Theta_{\alpha}^{2 / 3}} \varepsilon^{2-\frac{2}{3} \alpha}+\cdots\right)^{3 / 2}
$$

$$
\begin{aligned}
& \text { If } \alpha=3 \text {, } \\
& \text { one cannot reach Kazakov's critical point }
\end{aligned}
$$

Discussion part was intentionally deleted!!

