# Quantization of interacting topological super particle field theory 

N. Kawamoto

In collaboration with Y. Kaneko and A. D’Adda
N.K. and Watabiki: Commun. Math. Phys. 144 (1992)641; Mod. Phys. Lett. A 7 (1992) 1137.
N.K., K. Suehiro, T.Tsukioka and H.Umetsu: Nucl. Phys. (1998)

D’Adda, N.K., Shimode, Tsukioka, Phys. Lett. (2017)

## Generalized Gauge Theories

 in arbitrary dimensions| gauge field | $A=T^{a} A_{\mu}^{a} d x_{\mu}$ | $\mathcal{A}=\mathbf{1} \psi+\mathbf{i} \hat{\psi}+\mathbf{j} A+\mathbf{k} \hat{A}$ |
| :--- | :---: | :---: |
| gauge parameter $\quad v=T^{a} v^{a}$ | $\mathcal{V}=\mathbf{1} \hat{a}+\mathbf{i} a+\mathbf{j} \hat{\alpha}+\mathbf{k} \alpha$ |  |
| derivative | $d=d x^{\mu} \partial_{\mu}$ | $\mathcal{Q}=\mathbf{j} d$ |
| curvature | $F=d A+A^{2}$ | $\mathcal{F}=\mathcal{Q} \mathcal{A}+\mathcal{A}^{2}$ |
| gauge trans. | $\delta A=d v+[A, v]$ | $\delta \mathcal{A}=\mathcal{Q} \mathcal{V}+[\mathcal{A}, \mathcal{V}]$ |
| Chern-Simons | $\int \operatorname{Tr}\left(\frac{1}{2} A d A+\frac{1}{3} A^{3}\right)$ | $\int \operatorname{Tr}_{\mathbf{k}}\left(\frac{1}{2} \mathcal{A} Q \mathcal{A}+\frac{1}{3} \mathcal{A}^{3}\right)$ |
| Topological | $\int \operatorname{Tr}(F F)$ | $\int \operatorname{Str}_{\mathbf{1}}(\mathcal{F} \mathcal{F})$ |
| Yang-Mills | $\int \operatorname{Tr}(F \star F)$ | $\int \operatorname{Tr}_{\mathbf{1}}(\mathcal{F} \mathbf{v} \mathcal{F}) \star 1$ |
| Yang-Mills |  |  |

Quantization of Abelian 2-dim. BF theory

$$
B F=B\left(d \omega+\omega^{2}\right) \quad(4 \text {-dim. })
$$

$$
\begin{gathered}
\int_{M_{2}} d^{2} x\left[\epsilon^{\mu \nu} \phi \partial_{\mu} \omega_{\nu}+b \partial^{\mu} \omega_{\mu}-i \bar{c} \partial^{\mu} \partial_{\mu} c\right] \\
\phi d \omega \quad \delta \omega=d v
\end{gathered}
$$

| $\phi^{A}$ | $s \phi^{A}$ | $s_{\mu} \phi^{A}$ | $\widetilde{s} \phi^{A}$ |
| :---: | :---: | :---: | :---: |
| $\phi$ | 0 | $-\epsilon_{\mu \nu} \partial^{\nu} \bar{c}$ | 0 |
| $\omega_{\nu}$ | $\partial_{\nu} c$ | 0 | $-\epsilon_{\nu \rho} \partial^{\rho} c$ |
| $c$ | 0 | $-i \omega_{\mu}$ | 0 |
| $\bar{c}$ | $-i b$ | 0 | $-i \phi$ |
| $b$ | 0 | $\partial_{\mu} \bar{c}$ | 0 |

on shell $\mathrm{N}=2$ twisted SUSY invariance

$$
\begin{aligned}
s^{2} & =\{s, \tilde{s}\}=\tilde{s}^{2}=\left\{s_{\mu}, s_{\nu}\right\}=0, \\
\left\{s, s_{\mu}\right\} & =-i \partial_{\mu},\left\{\tilde{s}, s_{\mu}\right\}=i \epsilon_{\mu \nu} \partial^{\nu}
\end{aligned}
$$

Kato, N.K. Uchida ‘03
$\left.S_{\text {off-shell AQBF }}=\int_{M_{2}} d^{2} x\left[\epsilon^{\mu \nu} \phi \partial_{\mu} \omega_{\nu}+b \partial^{\mu} \omega_{\mu}-i \bar{c} \partial^{\mu} \partial_{\mu} c-i \lambda \rho\right]\right)$

$$
=\int_{M_{2}} d^{2} x s \tilde{s} \frac{1}{2} \epsilon^{\mu \nu} s_{\mu} s_{\nu}(-i \bar{c} c)
$$

off shel $\mathrm{N}=2$ twisted SUSY invariance

| $\phi^{A}$ | $s \phi^{A}$ | $s_{\mu} \phi^{A}$ | $\widetilde{s} \phi^{A}$ |
| :---: | :---: | :---: | :---: |
| $\phi$ | $i \rho$ | $-\epsilon_{\mu \nu} \partial^{\nu} \bar{c}$ | 0 |
| $\omega_{\nu}$ | $\partial_{\nu} c$ | $-i \epsilon_{\mu \nu} \lambda$ | $-\epsilon_{\nu \rho} \partial^{\rho} c$ |
| $c$ | 0 | $-i \omega_{\mu}$ | 0 |
| $\bar{c}$ | $-i b$ | 0 | $-i \phi$ |
| $b$ | 0 | $\partial_{\mu} \bar{c}$ | $-i \rho$ |
| $\lambda$ | $\epsilon^{\mu \nu} \partial_{\mu} \omega_{\nu}$ | 0 | $-\partial_{\mu} \omega^{\mu}$ |
| $\rho$ | 0 | $-\partial_{\mu} \phi-\epsilon_{\mu \nu} \partial^{\nu} b$ | 0 |

## Gauge Theory on the Random Lattice

Form

$$
\begin{aligned}
& \phi \\
& \omega=\omega_{\mu} d x^{\mu} \\
& B=B_{\mu \nu} d x^{\mu} d x \nu \\
& \Omega=\Omega_{\mu \nu \rho} d x^{\mu} d x^{\nu} d x \rho
\end{aligned}
$$

> Simplex


$$
\begin{aligned}
\mathcal{A} & =\mathrm{j}(\omega+\Omega+\cdots)+\mathbf{k}(\phi+B+\cdots) \\
& +1\left(\chi^{(1)}+\chi^{(3)}+\cdots\right)+\mathrm{i}\left(\chi^{(0)}+\chi^{(2)}+\cdots\right)
\end{aligned}
$$

(quaternion based formulation: origin ?)

$$
\begin{gathered}
S=\int \operatorname{Tr}\left(\frac{1}{2} \mathcal{A} Q \mathcal{A}+\frac{1}{3} \mathcal{A}^{3}\right) \\
\delta \mathcal{A}=d \mathcal{V}+[\mathcal{A}, \mathcal{V}]
\end{gathered}
$$

N.K. \& Watabiki ‘91

## Gauge Theory + Gravity ?

$$
\text { Boson } \longleftrightarrow \text { Fermion? }
$$



3d Chern-Simons gravity by witten (1988/89)

## 3-dim. Chern- Simon Gravity

$$
S_{\text {cont }}=\int\left(\frac{1}{2} A d A+\frac{1}{3} A^{3}\right)=\int \operatorname{Tr}\left(e \wedge\left(d \omega+\omega^{2}\right)\right) \quad(\text { Witten 1988/89 })
$$

$$
\left(A=e^{a} P_{a}+\omega^{a b} J_{a b}\right)
$$

regge calculus idea

$$
S_{L a t}=\sum_{l} \epsilon_{a b c} e^{a}(l)\left[\ln \prod_{\partial \widetilde{P}(l)} U\right]^{b c} \quad U=e^{\omega}
$$

$$
Z=\int d U d e e^{-S} \sim \Pi_{\text {edges }}(2 J+1) \Pi_{\text {tetraheera }}(-1)^{\sum J_{i}}\left\{\begin{array}{lll}
J_{1} & J_{2} & J_{3} \\
J_{4} & J_{5} & J_{6}
\end{array}\right\}
$$

$$
\sim \sum e^{-S_{\text {Regge }}} \quad \text { Ponzano-Regge gravity }
$$

N.K., H.B.Nielsen \& N.Sato (1999)



2-3 move


1-4 move


$$
(-1)^{\sum_{i=1}^{6} J_{4}}\left\{\begin{array}{lll}
J_{1} & J_{2} & J_{3} \\
J_{4} & J_{5} & J_{6}
\end{array}\right\} \sim \frac{1}{\sqrt{12 \pi V}} \cos \left(S_{\text {Regge }}+\frac{\pi}{4}\right) \quad\left(\text { all } J_{i} \gg 1\right)
$$

$$
\begin{aligned}
& Z=\int \mathcal{D} U \mathcal{D} B \delta\left((\overline{\mathbf{M}} U(\tilde{l})) B(\overline{\mathbf{M}} U(\tilde{l}))^{\dagger}-B\right) \sum_{N} \delta(|B|-N) e^{i . S_{L B F}} \\
& S_{L B F}=\sum_{t} \operatorname{tr}\left(-i B(t)\left[\ln \prod_{\tilde{l} \in \tilde{P}} U(\tilde{l})\right]\right)=\frac{1}{2} \sum_{t} B^{a}(t) F^{a}(t) \\
& Z_{L B F}=\sum_{J} \prod_{\text {site }} \Lambda^{-1} \prod_{\text {link }} \Lambda \prod_{\text {triangle }}(2 J+1) \prod_{\text {eterahederon }}^{(2 J+1)} \prod_{\text {4-simplex }}\left\{\begin{array}{ccccc}
J_{1} & J_{2} & J_{3} & J_{4} & J_{5} \\
J_{6} & J_{7} & J_{8} & J_{9} & J_{10} \\
J_{11} & J_{12} & J_{13} & J_{14} & J_{15}
\end{array}\right\} \quad\left(F^{a}=e^{d \omega+\omega^{2}+\cdots}\right) \\
& \left\{\begin{array}{lllll}
J_{1} & J_{2} & J_{3} & J_{4} & J_{5} \\
J_{6} & J_{7} & J_{8} & J_{9} & J_{10} \\
J_{11} & J_{12} & J_{13} & J_{14} & J_{15}
\end{array}\right\}=\sum_{\text {all } m_{i}}(-)^{\sum_{i=1}^{15}\left(J_{i}-m_{i}\right)}\left(\begin{array}{ccc}
J_{1} & J_{7} & J_{6} \\
m_{1} & m_{7} & m_{6}
\end{array}\right)\left(\begin{array}{ccc}
J_{3} & J_{8} & J_{7} \\
-m_{3} & -m_{8} & -m_{7}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
J_{4} & J_{8} & J_{9} \\
m_{4} & m_{8} & m_{9}
\end{array}\right)\left(\begin{array}{ccc}
J_{1} & J_{9} & J_{10} \\
-m_{1} & -m_{9} & -m_{10}
\end{array}\right)\left(\begin{array}{ccc}
J_{2} & J_{11} & J_{10} \\
m_{2} & m_{11} & m_{10}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
J_{4} & J_{11} & J_{12} \\
-m_{4} & -m_{11} & -m_{12}
\end{array}\right)\left(\begin{array}{ccc}
J_{5} & J_{13} & J_{14} \\
m_{5} & m_{13} & m_{14}
\end{array}\right)\left(\begin{array}{ccc}
J_{2} & J_{14} & J_{13} \\
-m_{2} & -m_{14} & -m_{13}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
J_{3} & J_{14} & J_{15} \\
m_{3} & m_{14} & m_{15}
\end{array}\right)\left(\begin{array}{ccc}
J_{5} & J_{15} & J_{6} \\
-m_{5} & -m_{15} & -m_{6}
\end{array}\right) \\
& \text { 1-5 move } \\
& \text { 2-4 move } \\
& \text { 3-3 move }
\end{aligned}
$$

## Generalized Chern-Simons actions in arbitrary dimensions

$$
S=\int \operatorname{Tr}\left(\frac{1}{2} \mathcal{A} Q \mathcal{A}+\frac{1}{3} \mathcal{A}^{3}\right)=\mathbf{1} S^{1}+\mathbf{i} S^{i}+\mathbf{j} S^{j}+\mathbf{k} S^{k} \in \mathbf{\Lambda}_{-}
$$

is invariant under a generalized gauge transformation:

$$
\delta \mathcal{A}=Q \mathcal{V}+[\mathcal{A}, \mathcal{V}]=\mathbf{1} \delta \psi_{1}+\mathbf{i} \delta \hat{\psi}_{0}+\mathbf{j} \delta A_{0}+\mathbf{k} \delta \hat{A}_{1}
$$

To prove generalized gauge invariance:

1. $Q^{2}=0$
2. $\left\{\vec{Q}, \lambda_{-}\right\}=Q \lambda_{-}, \quad\left[\vec{Q}, \lambda_{+}\right]=Q \lambda_{+}$
3. $\operatorname{Tr}\left(\lambda_{+} \lambda_{+}^{\prime}\right)=\operatorname{Tr}\left(\lambda_{+}^{\prime} \lambda_{+}\right), \quad \operatorname{Tr}\left(\lambda_{-} \lambda_{+}\right)=\operatorname{Tr}\left(\lambda_{+} \lambda_{-}\right), \quad \operatorname{Tr}\left(\lambda_{-} \lambda_{-}^{\prime}\right)=-\operatorname{Tr}\left(\lambda_{-}^{\prime} \lambda_{-}\right)$

$$
S_{G C S}=\int \operatorname{Tr}\left(\frac{1}{2} \mathcal{A} Q \mathcal{A}+\frac{1}{3} \mathcal{A}^{3}\right)
$$

$\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-\mathbf{1}$,

$$
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}, \quad \mathbf{j k}=-\mathrm{kj}=\mathbf{i}, \quad \mathbf{k i}=-\mathbf{i} \mathbf{k}=\mathbf{j}
$$

$$
\delta \mathcal{A}=Q \mathcal{V}+[\mathcal{A}, \mathcal{V}] \quad(Q=\mathbf{j} d)
$$

Let us introduce two-type of fields $a+b+c=$ odd or even
(Abelian) $\left[\mathbf{q}(a, b, c), \Phi_{\left(a^{\prime}, b^{\prime}, c^{\prime}\right)}\right]=0$

$$
\begin{aligned}
\mathcal{A} & =\mathbf{q}(1,1,1) \Phi_{(1,1,1)}+\mathbf{q}(1,0,0) \Phi_{(1,0,0)}+\mathbf{q}(0,1,0) \Phi_{(0,1,0)}+\mathbf{q}(0,0,1) \Phi_{(0,0,1)} \\
& =\mathbf{1} \Phi_{(1,1,1)}+\mathbf{i} \Phi_{(1,0,0)}+\mathbf{j} \Phi_{(0,1,0)}+\mathbf{k} \Phi_{(0,0,1)} \in \boldsymbol{\Lambda}_{-} \\
\mathcal{V} & =\mathbf{q}(0,0,0) \Phi_{(0,0,0)}+\mathbf{q}(0,1,1) \Phi_{(0,1,1)}+\mathbf{q}(1,0,1) \Phi_{(1,0,1)}+\mathbf{q}(1,1,0) \Phi_{(1,1,0)} \\
& =\mathbf{1} \Phi_{(0,0,0)}+\mathbf{i} \Phi_{(0,1,1)}+\mathbf{j} \Phi_{(1,0,1)}+\mathbf{k} \Phi_{(1,1,0)} \quad \in \boldsymbol{\Lambda}_{+}
\end{aligned}
$$

Z(2) grading structure

$$
\mathcal{A} \mathcal{A}^{\prime}=-\mathcal{A}^{\prime} \mathcal{A} \in \Lambda_{+} \quad \mathcal{A} \mathcal{V}=\mathcal{V} \mathcal{A} \in \Lambda_{-} \quad \mathcal{V} \mathcal{V}^{\prime}=\mathcal{V}^{\prime} \mathcal{V} \in \Lambda_{+}
$$

## different grading commutes

 with quaternion$=$| total 3-gradings (anti-commuting) |
| :--- |
| without quaternion |

## Higher form gauge fields and non-Abelian extension



Derivative operator: $d=d x^{\mu} \partial_{\mu}$ as $\mathcal{A}$-type operator:

$$
Q=\mathbf{q}(0,1,0) d=\mathbf{j} d
$$

Non Abelian extension

$$
\begin{aligned}
& \mathcal{A}=\mathcal{A}^{B} T^{B}=\left(\mathbf{1} \psi_{1}^{B}+\mathbf{i} \hat{\psi}_{0}^{B}+\mathbf{j} A_{0}^{B}+\mathbf{k} \hat{A}_{1}^{B}\right) T^{B} \\
& \mathcal{V}=\mathcal{V}^{B} T^{B}=\left(\mathbf{1} \hat{a}_{0}^{B}+\mathbf{i} a_{1}^{B}+\mathbf{j} \hat{\alpha}_{1}^{B}+\mathbf{k} \alpha_{0}^{B}\right) T^{B}
\end{aligned}
$$

fermionic-odd

## Generalized Chern-Simons actions

fermionic-even

$$
S^{1}=\int \operatorname{Tr}\left[-\psi_{1}\left(d A_{0}+A_{0}^{2}+\hat{A}_{1}^{2}+\hat{\psi}_{0}^{2}\right)+\hat{A}_{1}\left(d \hat{\psi}_{0}+\left[A_{0}, \hat{\psi}_{0}\right]\right)+\frac{1}{3} \psi_{1}^{3}\right]
$$

$$
S^{i}=\int \operatorname{Tr}\left[-\hat{\psi}_{0}\left(d A_{0}+A_{0}^{2}+\hat{A}_{1}^{2}-\psi_{1}^{2}\right)-\hat{A}_{1}\left(d \psi_{1}+\left\{A_{0}, \psi_{1}\right\}\right)-\frac{1}{3} \hat{\psi}_{0}^{3}\right]
$$

bosonic-odd $S^{j}=\int \operatorname{Tr}\left[-\frac{1}{2} A_{0} d A_{0}-\frac{1}{3} A_{0}^{3}+\frac{1}{2} \hat{A}_{1}\left(d \hat{A}_{1}+\left[A_{0}, \hat{A}_{1}\right]\right)\right.$

$$
\left.+\frac{1}{2} \hat{\psi}_{0}\left(d \hat{\psi}_{0}+\left[A_{0}, \hat{\psi}_{0}\right]\right)+\frac{1}{2} \psi_{1}\left(d \psi_{1}+\left\{A_{0}, \psi_{1}\right\}\right)-\hat{\psi}_{0}\left\{\psi_{1}, \hat{A}_{1}\right\}\right]
$$

bosonic-even

$$
\left.S^{k}=\int \operatorname{Tr}\left[\underline{-\hat{A}_{1}\left(d A_{0}+A_{0}^{2}\right.}+\hat{\psi}_{0}^{2}-\psi_{1}^{2}\right)-\frac{1}{3} \hat{A}_{1}^{3}-\psi_{1}\left(d \hat{\psi}_{0}+\left[A_{0}, \hat{\psi}_{0}\right]\right)\right]
$$

are generalized gauge invariant:

$$
\begin{aligned}
& \delta A_{0}=d \hat{a}_{0}+\left[A_{0}, \hat{a}_{0}\right]+\left\{\hat{A}_{1}, a_{1}\right\}+\left[\psi_{1}, \hat{\alpha}_{1}\right]-\left\{\hat{\psi}_{0}, \alpha_{0}\right\}, \\
& \delta \underline{\hat{A}_{1}=-d a_{1}-\left\{A_{0}, a_{1}\right\}+\left[\hat{A}_{1}, \hat{a}_{0}\right]+\left[\psi_{1}, \alpha_{0}\right]+\left\{\hat{\psi}_{0}, \hat{\alpha}_{1}\right\},} \\
& \delta \psi_{1}=-d \hat{\alpha}_{1}-\left[A_{0}, \hat{\alpha}_{1}\right]-\left[\hat{A}_{1}, \alpha_{0}\right]+\left[\psi_{1}, \hat{a}_{0}\right]-\left[\hat{\psi}_{0}, a_{1}\right], \\
& \delta \hat{\psi}_{0}=d \alpha_{0}+\left\{A_{0}, \alpha_{0}\right\}-\left\{\hat{A}_{1}, \hat{\alpha}_{1}\right\}+\left[\psi_{1}, a_{1}\right]+\left[\hat{\psi}_{0}, \hat{a}_{0}\right]
\end{aligned}
$$

All anti-commutators turn into commutators for Lie algebra! (hidden grading $c$ )

$$
\left\{A_{0}, \alpha_{0}\right\}=A_{0}^{B} \alpha_{0}^{C}\left[T^{B}, T^{C}\right], \quad\left\{\hat{\psi}_{0}, \hat{\alpha}_{1}\right\}=\hat{\psi}_{0}^{B} \hat{\alpha}_{1}^{C}\left[T^{B}, T^{C}\right], \quad\left\{\hat{A}_{1}, a_{1}\right\}=\hat{A}_{1}^{B} a_{1}^{C}\left[T^{B}, T^{C}\right]
$$

## D-dimensional generalized Chern-Simons actions

generalized gauge fields

$$
\begin{gathered}
\psi_{c}^{(i)} \quad i \text { i i-form } \\
\phi_{1}^{(0)}, \omega_{0}^{(1)}, B_{1}^{(2)}, \Omega_{0}^{(3)}, H_{1}^{(4)}, \ldots
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{A} & =\mathbf{1} \psi_{1}+\mathbf{i} \hat{\psi}_{0}+\mathbf{j} A_{0}+\mathbf{k} \hat{A}_{1} \\
& =\mathbf{1}\left(\psi_{1}^{(1)}+\psi_{1}^{(3)}+\cdots\right)+\mathbf{i}\left(\psi_{0}^{(0)}+\psi_{0}^{(2)}+\psi_{0}^{(4)}+\cdots\right) \\
& +\mathbf{j}\left(\omega_{0}^{(1)}+\Omega_{0}^{(3)}+\cdots\right)+\mathbf{k}\left(\phi_{1}^{(0)}+B_{1}^{(2)}+H_{1}^{(4)}+\cdots\right),
\end{aligned}
$$

generalized gauge parameters

$$
\begin{array}{r}
\alpha_{c}^{(i)} \quad i \text { : i-form } \\
v_{0}^{(0)}, u_{1}^{(1)}, b_{0}^{(2)}, U_{1}^{(3)}, h_{0}^{(4)}, . .
\end{array}
$$

$$
\begin{aligned}
\mathcal{V} & =\mathbf{1} \hat{a}_{0}+\mathbf{i} a_{1}+\mathbf{j} \hat{\alpha}_{1}+\mathbf{k} \alpha_{0} \\
& =\mathbf{1}\left(v_{0}^{(0)}+b_{0}^{(2)}+h_{0}^{(4)}+\cdots\right)+\mathbf{i}\left(u_{1}^{(1)}+U_{1}^{(3)}+\cdots\right) \\
& +\mathbf{j}\left(\alpha_{1}^{(0)}+\alpha_{1}^{(2)}+\alpha_{1}^{(4)} \cdots\right)+\mathbf{k}\left(\alpha_{0}^{(1)}+\alpha_{0}^{(3)}+\cdots\right)
\end{aligned}
$$

## 2-grading system

(exclude fermionic gauge fields and parameters)

$$
\begin{gathered}
\psi=0, \quad \alpha=0 \\
S_{2}^{k}(\psi=0)=\int \operatorname{Tr}\left[-\phi_{1}\left(d \omega_{0}+\omega_{0}^{2}\right)-\phi_{1}^{2} B_{1}\right] \\
S_{3}^{j}(\psi=0)=\int \operatorname{Tr}\left[-\frac{1}{2} \omega_{0} d \omega_{0}-\frac{1}{3} \omega_{0}^{3}+\phi_{1}\left(d B_{1}+\left[\omega_{0}, B_{1}\right]\right)-\Omega_{0} \phi_{1}^{2}\right], \\
S_{4}^{k}(\psi=0)=\int \operatorname{Tr}\left[-B_{1}\left(d \omega_{0}+\omega_{0}^{2}\right)-\phi_{1}\left(d \Omega_{0}+\left\{\omega_{0}, \Omega_{0}\right\}+B_{1}^{2}-H_{1} \phi_{1}^{2}\right]\right. \\
\text { (even-form gauge field) }
\end{gathered}
$$

$$
\begin{aligned}
& \delta \phi_{1}=\left[\phi_{1}, v_{0}\right], \\
& \delta \omega_{0}=d v_{0}+\left[\omega_{0}, v_{0}\right]+\left\{\phi_{1}, u_{1}\right\}, \\
& \delta B_{1}=-d u_{1}-\left\{\omega_{0}, u_{1}\right\}+\left[\phi_{1}, b_{0}\right]+\left[B_{1}, v_{0}\right], \\
& \delta \Omega_{0}=d b_{0}+\left[\omega_{0}, b_{0}\right]+\left\{\phi_{1}, U_{1}\right\}+\left\{B_{1}, u_{1}\right\}+\left[\Omega_{0}, v_{0}\right] \\
& \delta H_{1}=-d U_{1}-\left\{\omega_{0}, U_{1}\right\}+\left[\phi_{1}, h_{0}\right]+\left[B_{1}, b_{0}\right]-\left\{\Omega_{0}, u_{1}\right\}+\left[H_{1}, v_{0}\right]
\end{aligned}
$$

(odd-form gauge parameter) ${ }_{7}$

## 0-, $\cdots, 4$-dimensional generalized Chern-Simons actions

(differential form degree: sector-wise equivalence for G-C-S)

$$
\begin{aligned}
& S_{0}^{k}=\int \operatorname{Tr}\left[-\phi_{1}\left(\hat{\psi}_{0}^{(0)}\right)^{2}-\frac{1}{3} \phi_{1}^{3}\right] \\
& S_{1}^{j}=\int \operatorname{Tr}\left[\frac{1}{2} \phi_{1}\left(d \phi_{1}+\left[\omega_{0}, \phi_{1}\right]\right)-\hat{\psi}_{0}^{(0)}\left\{\psi_{1}^{(1)}, \phi_{1}\right\}+\frac{1}{2} \hat{\psi}_{0}^{(0)}\left(d \hat{\psi}_{0}^{(0)}+\left[\omega_{0}, \hat{\psi}_{0}^{(0)}\right]\right)\right] \\
& S_{2}^{k}=\int T r\left[-\phi_{1}\left(d \omega_{0}+\omega_{0}^{2}+\left\{\hat{\psi}_{0}^{(0)}, \hat{\psi}_{0}^{(2)}\right\}-\left(\psi_{1}^{(1)}\right)^{2}\right)-\psi_{1}^{(1)}\left(d \hat{\psi}_{0}^{(0)}+\left[\omega_{0}, \hat{\psi}_{0}^{(0)}\right]\right)-\phi_{1}^{2} B_{1}\right] \\
& S_{3}^{j}=\int T r\left[\underline{-\frac{1}{2} \omega_{0} d \omega_{0}-\frac{1}{3} \omega_{0}^{3}+\hat{\psi}_{0}^{(0)}\left(d \hat{\psi}_{0}^{(2)}+\left[\omega_{0}, \hat{\psi}_{0}^{(2)}\right]-\left\{\psi_{1}^{(1)}, B_{1}\right\}-\left\{\psi_{1}^{(3)}, \phi_{1}\right\}\right)}\right. \\
& \left.+\phi_{1}\left(d B_{1}+\left[\omega_{0}, B_{1}\right]\right)-\Omega_{0}\left(\phi_{1}^{2}+\left(\hat{\psi}_{0}^{(0)}\right)^{2}\right)\right] \\
& S_{4}^{k}=\int T r\left[-B_{1}\left(d \omega_{0}+\omega_{0}^{2}+\left\{\hat{\psi}_{0}^{(0)}, \hat{\psi}_{0}^{(2)}\right\}-\left(\psi_{1}^{(1)}\right)^{2}\right)-\phi_{1}\left(d \Omega_{0}+\left\{\omega_{0}, \Omega_{0}\right\}+B_{1}^{2}+\left\{\hat{\psi}_{0}^{(0)}, \hat{\psi}_{0}^{(4)}\right\}\right.\right. \\
& \left.\left.-\left\{\psi_{1}^{(1)}, \psi_{1}^{(3)}\right\}\right)-H_{1}\left(\left(\hat{\psi}_{0}^{(0)}\right)^{2}+\phi_{1}^{2}\right)-\psi_{1}^{(1)}\left(d \hat{\psi}_{0}^{(2)}+\left[\omega_{0}, \hat{\psi}_{0}^{(2)}\right]+\left[\Omega_{0}, \hat{\psi}_{0}^{(0)}\right]\right)-\psi_{1}^{(3)}\left[\omega_{0}, \hat{\psi}_{0}^{(0)}\right]\right]
\end{aligned}
$$

## bosonic generalized gauge transformations

$$
\begin{aligned}
& \delta \phi_{1}=\left[\phi_{1}, v_{0}\right]+\left\{\hat{\psi}_{0}^{(0)}, \hat{\alpha}_{1}^{(0)}\right\}, \\
& \delta \omega_{0}=d v_{0}+\left[\omega_{0}, v_{0}\right]+\left\{\phi_{1}, u_{1}\right\}+\left[\psi_{1}^{(1)}, \hat{\alpha}_{1}^{(0)}\right]-\left\{\hat{\psi}_{0}^{(0)}, \alpha_{0}^{(1)}\right\}, \\
& \underline{\underline{\delta B_{1}}}=\left\{-d u_{1}-\left\{\omega_{0}, u_{1}\right\}+\left[\phi_{1}, b_{0}\right]+\left[B_{1}, v_{0}\right]+\left\{\hat{\psi}_{0}^{(0)}, \hat{\alpha}_{1}^{(2)}\right\}+\left[\psi_{1}^{(1)}, \alpha_{0}^{(1)}\right]+\left\{\hat{\psi}_{0}^{(2)}, \hat{\alpha}_{1}^{(0)}\right\},\right. \\
& \delta \Omega_{0}=d b_{0}+\left[\omega_{0}, b_{0}\right]+\left\{\phi_{1}, U_{1}\right\}+\left\{B_{1}, u_{1}\right\}+\left[\Omega_{0}, v_{0}\right] \\
&-\left\{\hat{\psi}_{0}^{(0)}, \alpha_{0}^{(3)}\right\}+\left[\psi_{1}^{(1)}, \hat{\alpha}_{1}^{(2)}\right]-\left\{\hat{\psi}_{0}^{(2)}, \alpha_{0}^{(1)}\right\}+\left[\psi_{1}^{(3)}, \hat{\alpha}_{1}^{(0)}\right], \\
& \delta H_{1}=-d U_{1}-\left\{\omega_{0}, U_{1}\right\}+\left[\phi_{1}, h_{0}\right]+\left[B_{1}, b_{0}\right]-\left\{\Omega_{0}, u_{1}\right\}+\left[H_{1}, v_{0}\right] \\
&+\left\{\hat{\psi}_{0}^{(0)}, \alpha_{1}^{(4)}\right\}+\left[\psi_{1}^{(1)}, \alpha_{0}^{(3)}\right]+\left\{\hat{\psi}_{0}^{(2)}, \hat{\alpha}_{1}^{(2)}\right\}+\left[\psi_{1}^{(3)}, \alpha_{0}^{(1)}\right]+\left\{\hat{\psi}_{0}^{(4)}, \hat{\alpha}_{1}^{(0)}\right\}
\end{aligned}
$$

## Kalb-Ramond $\longrightarrow \mathrm{BF} \rightarrow$ this formulation

fermionic generalized gauge transformations

$$
\begin{aligned}
\delta \hat{\psi}_{0}^{(0)} & =\left[\hat{\psi}_{0}^{(0)}, v_{0}\right]-\left\{\phi_{1}, \hat{\alpha}_{1}^{(0)}\right\}, \\
\delta \psi_{1}^{(1)} & =-d \hat{\alpha}_{1}^{(0)}-\left[\omega_{0}, \hat{\alpha}_{1}^{(0)}\right]-\left[\phi_{1}, \alpha_{0}^{(1)}\right]-\left[\hat{\psi}_{0}^{(0)}, u_{1}\right]+\left[\psi_{1}^{(1)}, v_{0}\right], \\
\delta \hat{\psi}_{0}^{(2)} & =d \alpha_{0}^{(1)}+\left\{\omega_{0}, \alpha_{0}^{(1)}\right\}-\left\{\phi_{1}, \hat{\alpha}_{1}^{(2)}\right\}-\left\{B_{1}, \hat{\alpha}_{1}^{(0)}\right\}+\left[\hat{\psi}_{0}^{(0)}, b_{0}\right]+\left[\psi_{1}^{(1)}, u_{1}\right]+\left[\hat{\psi}_{0}^{(2)}, v_{0}\right], \\
\delta \psi_{1}^{(3)} & =-d \hat{\alpha}_{1}^{(2)}-\left[\omega_{0}, \hat{\alpha}_{1}^{(2)}\right]-\left[\phi_{1}, \alpha_{0}^{(3)}\right]-\left[B_{1}, \alpha_{0}^{(1)}\right]-\left[\Omega_{0}, \hat{\alpha}_{1}^{(0)}\right] \\
& -\left[\hat{\psi}_{0}^{(0)}, U_{1}\right]+\left[\psi_{1}^{(1)}, b_{0}\right]-\left[\hat{\psi}_{0}^{(2)}, u_{1}\right]+\left[\psi_{1}^{(3)}, v_{0}\right], \\
\delta \hat{\psi}_{0}^{(4)} & =d \alpha_{0}^{(3)}+\left\{\omega_{0}, \alpha_{0}^{(3)}\right\}-\left\{\phi_{1}, \alpha_{1}^{(4)}\right\}-\left\{B_{1}, \hat{\alpha}_{1}^{(2)}\right\}+\left\{\Omega_{0}, \alpha_{0}^{(1)}\right\}-\left\{H_{1}, \hat{\alpha}_{1}^{(0)}\right\} \\
& +\left[\hat{\psi}_{0}^{(0)}, h_{0}\right]+\left[\psi_{1}^{(1)}, U_{1}\right]+\left[\hat{\psi}_{0}^{(2)}, b_{0}\right]+\left[\psi_{1}^{(3)}, u_{1}\right]+\left[\hat{\psi}_{0}^{(4)}, v_{0}\right]
\end{aligned}
$$

## Quantization by Batalin-Vilkovisky formalism

BRST transformation for gauge field and ghost:

$$
\left[Q_{B}, A_{\mu}^{a}\right]=D_{\mu} c^{a}, \quad\left[Q_{B}, c^{a}\right]=\frac{1}{2} f_{b c}^{a} c^{b} c^{c}
$$

nilpotency of: $Q_{B}$

$$
\left[Q_{B}, D_{\mu} c^{a}\right]=0, \quad\left[Q_{B}, \frac{1}{2} f_{b c}^{a} c^{b} c^{c}\right]=0
$$

Consider the action with external fields:

$$
S[J, K]=\int d^{d} x\left(\mathcal{L}+J_{a}^{\mu} A_{\mu}^{a}+J_{a} c^{a}+K_{a}^{\mu} D_{\mu} c^{a}-\frac{1}{2} K_{a} f_{b c}^{a} c^{b} c^{c}\right)
$$

Ward-Takahashi identity:

$$
\begin{aligned}
& 0=\left\langle\left[Q_{B}, e^{i S[J, K]}\right]\right\rangle=i \int d^{d} x\left\langle\left(J_{a}^{\mu} D_{\mu} c^{a}-\frac{1}{2} J_{a} f_{b c}^{a} c^{b} c^{c}\right) e^{i S[J, K]}\right\rangle \\
& e^{i \Gamma[J, K]}=\left\langle e^{i S[J, K]}\right\rangle \\
& \quad \Phi_{\mu}^{a}=\frac{\partial}{\partial J_{a}^{\mu}} \Gamma[J, K]=\left\langle A_{\mu}^{a} e^{i S}\right\rangle, \quad \Phi^{a}=\frac{\partial}{\partial J_{a}} \Gamma[J, K]=\left\langle c^{a} e^{i S}\right\rangle
\end{aligned}
$$

Effective action;

$$
W[\Phi, K]=\Gamma[J, K]+J \cdot \Phi \quad J_{a}^{\mu}=\frac{\partial W}{\partial \Phi_{\mu}^{a}}, \quad J_{a}=\frac{\partial W}{\partial \Phi^{a}}
$$

WT-id = Slavnov-Taylor identity:

$$
\begin{gathered}
0=\left(J_{a}^{\mu} \cdot \frac{\partial}{\partial K_{\mu}^{a}}+J_{a} \cdot \frac{\partial}{\partial K^{a}}\right) \Gamma[J, K]=\frac{\partial W}{\partial \Phi_{\mu}^{a}} \frac{\partial W}{\partial K_{a}^{\mu}}+\frac{\partial W}{\partial \Phi^{a}} \frac{\partial W}{\partial K_{a}}=(W, W) \\
\delta_{B R S T} \Phi=(\Phi, W) \quad \underbrace{}_{\text {fermionic }} \text { bosonic }
\end{gathered}
$$

Batalin-Vilkovisky quantization is the generalization of this.

## Batalin-Vilkovisky quantization

Define Poisson bracket: $\quad\{F, G\}=\frac{F \overleftarrow{\partial}}{\partial \Phi^{A}} \frac{\partial G}{\partial \Phi_{A}^{*}}-\frac{F \overleftarrow{\partial}}{\partial \Phi_{A}^{*}} \frac{\partial G}{\partial \Phi^{A}} \quad$ graded Jacobi id degree of anti-field $\quad \Phi_{A}^{*}: \quad\left|\Phi_{A}^{*}\right|=-\left|\Phi_{A}\right|-1 \quad \frac{F \overleftarrow{\partial}}{\partial \Phi^{A}}=(-1)^{\left|\Phi_{A}\right|\left(|F|+\left|\Phi_{A}\right|\right)} \frac{\partial F}{\partial \Phi_{A}}$

$$
W\left[\Phi, \Phi^{*}\right]=\int d^{d} x\left(\mathcal{L}+J_{a}^{\mu} A_{\mu}^{a}+J_{a} c^{a}+A_{a}^{\mu *} D_{\mu} c^{a}-c_{a}^{*} \frac{1}{2} f_{b c}^{a} c^{b} c^{c}+\bar{c}_{a}^{*} b^{a}\right)
$$

Quantized gauge action satisfies master equation: (gauge fixing)

$$
\begin{aligned}
\{W, W\} & =2 \frac{\partial W}{\partial A_{\mu}^{a}} \frac{\partial W}{\partial A_{a}^{\mu *}}-2 \frac{\partial W}{\partial c^{a}} \frac{\partial W}{\partial c_{a}^{*}}-2 \frac{\partial W}{\partial \bar{c}^{a}} \frac{\partial W}{\partial \bar{c}_{a}^{*}} \\
& =2\left\langle J_{a}^{\mu} D_{\mu} c^{a}-J_{a} \frac{1}{2} f_{b c}^{a} c^{b} c^{c}\right\rangle=0
\end{aligned}
$$

$$
\{W, W\}=0
$$

BRST transformation: $\quad \delta_{B} \Phi^{A}=\left\{W, \Phi^{A}\right\}$
anti-field $\Phi_{A}^{*}$ can be replaced by derivative of gauge fermion $\Psi$

$$
\begin{gathered}
\Phi_{A}^{*}=\frac{\Psi \overleftarrow{\partial}}{\partial \Phi^{A}} \quad(\operatorname{deg} \cdot \Psi=-1) \\
\int D \Phi^{A} e^{\frac{i}{\hbar} W\left(\Phi, \frac{(\Psi+\Delta \Psi) \overleftarrow{\partial}}{\partial \Phi^{A}}\right)}-\int D \Phi^{A} e^{\frac{i}{\hbar} W\left(\Phi, \frac{\left.\Psi^{\overleftarrow{\delta}}\right)}{\left.\partial \Phi^{A}\right)}\right.} \\
\propto \int D \Phi^{A} \Delta \Psi\left(i \hbar \Delta_{B V} W-\frac{1}{2}\{W, W\}\right) e^{\frac{i}{\hbar} W}
\end{gathered}
$$

Yang-Mills

$$
\begin{aligned}
\Psi & =\bar{c}^{a} \partial_{\mu} A_{a}^{\mu} \\
A_{\mu}^{a *} & =\frac{\partial \Psi}{\partial A_{a}^{\mu}}=\bar{c}^{a} \partial_{\mu} \\
c_{a}^{*} & =-\frac{\partial \Psi}{\partial c^{a}}=0 \\
\bar{c}_{a}^{*} & =-\frac{\partial \Psi}{\partial \bar{c}^{a}}=\partial_{\mu} A_{a}^{\mu}
\end{aligned}
$$

$W$ is independent of the choice of gauge fixing fermion $\Psi$
if the quantum master equation is satisfied:

$$
i \hbar \Delta_{B V} W-\frac{1}{2}\{W, W\}=0 \quad W=\int d^{4} x\left(\mathcal{L}+\bar{c}_{a} \partial_{\mu} D^{\mu} c^{a}+b^{a} \partial_{\mu} A_{a}^{\mu}\right)
$$

$$
\hbar \rightarrow 0: \text { calssical master equation, } \quad\{W, W\}=0
$$

## Symplectic structure in classical mechanics

Hamiltonian; $\quad H(q, p)=p_{i} \dot{q}^{i}-L(q, \dot{q}), \quad p_{i}=\frac{\partial L}{\partial \dot{q}^{i}}$

$$
\frac{\partial H}{\partial p_{i}}=\dot{q}^{i}, \quad \frac{\partial H}{\partial q^{i}}=-\frac{\partial L}{\partial q^{i}}=-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}=-\dot{p}_{i}
$$

(BRST tr.) $\dot{F}(q, p)=\{F, H\}=\frac{\partial F}{\partial q^{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial H}{\partial q^{i}}=\frac{\partial F}{\partial q^{i}} \dot{q}^{i}+\frac{\partial F}{\partial p_{i}} \dot{p}_{i}$
Poisson bracket
(Master eq.) $\frac{\partial H}{\partial t}=\{H, H\}=0 \quad$ Energy conservation

Lagrangian: $\quad L(q, \dot{q})=p_{i} \dot{q}^{i}-H(q, p)$
Action: $S=\int d t(p \dot{q}-H)$

## AKSZ construction of graded symplectic manifold

(Alexandrov, Kontsevich, Schwartz and Zaboronsky)

grade 1 vector field (BRST charge)

$$
\begin{aligned}
& Q \cdot \equiv\{\Theta, \cdot\} \\
& \begin{array}{l}
\left.Q=Q^{i} \frac{\partial}{\partial x^{i}}=\frac{\partial \Theta}{\partial q^{i}} \frac{\partial}{\partial p_{i}}-\frac{\partial \Theta}{\partial p_{i}} \frac{\partial}{\partial q^{i}},\left(x^{i}\right)=\left(q^{i}, p_{i}\right)\right) \\
Q^{2} \cdot=Q\{\Theta, \cdot\}=\{\Theta,\{\Theta, \cdot\}\}=\frac{1}{2}\{\{\Theta, \Theta\}, \cdot\}=0 \\
\text { graded Jacobi identity } 0
\end{array} .
\end{aligned}
$$

Every solution to the classical master equation determines QP manifold = quantized physical phase space
closed symplectic two form: $\quad d \omega=0, \omega=\omega_{a b} d x^{a} \wedge d x^{b}$
Poisson bracket: $\quad\{F, G\}=\left(\omega^{-1}\right)^{a b} \frac{\partial F}{\partial x^{a}} \frac{\partial G}{\partial x^{b}}$
Symplectic:

$$
\mathcal{L}_{Q} \omega=\left(i_{Q} d+d i_{Q}\right) \omega=d i_{Q} \omega=0
$$

$$
\left(i_{Q}=Q^{a} \frac{\partial}{\partial\left(d x^{a}\right)}\right)
$$

existence of Hamiltonian $\Theta$ :

$$
i_{Q} \omega=d \Theta \quad \longrightarrow \quad\{\Theta, \Theta\}=0
$$

AKSZ construction of quantized action:

$$
S=\int d^{d} x d^{d} \theta(p \mathbf{d} q+\Theta) \quad\left(\mathbf{d}=\theta^{\mu} \partial_{\mu}, \theta_{\mu} \text { as odd coordinate }\right)
$$

## QP manifold can be geometrically understood as follows:

Consider the differential equations: $v^{i}(t)=\frac{d x^{i}(t)}{d t}=X^{i}(x(t))$

Assume grade 1 vector field:

$$
X=X^{i} \frac{\partial}{\partial x^{i}}
$$

$$
\begin{gathered}
x^{i}(t)=x^{i}+t v^{i} \quad \operatorname{deg}\{t\}= \\
X^{i}\left(x^{i}(t)\right)=X^{i}(x+v t)=X^{i}(x)+t v^{j} \frac{\partial X^{i}}{\partial x_{j}}
\end{gathered}
$$

$$
t X^{j} \frac{\partial X^{i}}{\partial x_{j}}
$$

$$
\frac{d X^{i}(x(t))}{d t}=X^{j} \frac{\partial X^{i}}{\partial x^{j}}=0 \quad \text { integrability of (*) }
$$

stationally flow (time independent)

$$
X^{i}=\left.Q^{i} \quad Q^{2}\right|_{i}=Q^{j} \frac{\partial Q^{i}}{\partial x^{j}}=0 \leftrightarrow\{\Theta, \Theta\}=0
$$

## Explicit examples QP mfd

graded coordinate: $\quad\left(q^{a}, p_{a}\right)$ grading $(1, n-1): \quad\left(x^{i} \sim\left(q^{a}, p_{a}\right)\right)$

Poisson bracket:

$$
\{F, G\}=\frac{F \overleftarrow{\partial}}{\partial q^{a}} \frac{\partial G}{\partial p_{a}}+(-1)^{n} \frac{F \overleftarrow{\partial}}{\partial p_{a}} \frac{\partial G}{\partial q^{a}} \quad\left(\frac{F \overleftarrow{\partial}}{\partial x^{a}}=(-1)^{\left|x^{a}\right|\left(|F|-\left|x^{a}\right|\right)} \frac{\partial F}{\partial x^{a}}\right)
$$

Hamiltonian, ex. $1: \Theta(q, p)=\frac{1}{2} f_{b c}^{a} p_{a} q^{b} q^{c} \quad\{\Theta, \Theta\}=0$
QP manifold: $\quad(M,\{\cdot, \cdot\}, \Theta)=0 \quad$ (find $\Theta$ to get QP-mfd)
nilpotent degree 1 vector field =BRST charge:

$$
\begin{aligned}
Q \cdot= & \{\Theta, \cdot\}=\frac{\Theta \overleftarrow{\partial}}{\partial q^{a}} \frac{\partial}{\partial p_{a}}+\frac{\Theta \overleftarrow{\partial}}{\partial p_{a}} \frac{\partial}{\partial q^{a}}=(-1)^{n}\left(f_{a b}^{c} q^{b} p_{c} \frac{\partial}{\partial p_{a}}+\frac{1}{2} f_{b c}^{a} q^{b} q^{c} \frac{\partial}{\partial q^{a}}\right) \\
& Q^{2}=0
\end{aligned}
$$

$$
\Sigma \rightarrow \mathcal{M}:(x, \theta) \mapsto\left(q^{a}, p^{a}\right)=\left(\Phi^{a}(x, \theta), \Psi^{a}(x, \theta)\right)
$$

field theory projection

$$
\begin{aligned}
\Psi^{a}(x, \theta)=c^{a}(x)+\theta^{\mu} A_{\mu}^{a}+\frac{1}{2} \theta^{\mu} \theta^{\nu} \phi_{\mu \nu}^{* a}(x), & \left(\varphi^{*}=\text { anti-field of } \varphi\right) \\
\Phi_{a}(x, \theta)=\phi_{a}(x)+\theta^{\mu} A_{a, \mu}^{*}(x)+\frac{1}{2} \theta^{\mu} \theta^{\nu} c_{a, \mu \nu}^{*}(x) & \left(\left|\varphi^{*}\right|=-|\varphi|-1\right) \\
\mathbf{d}=\theta^{\mu} \partial_{\mu} & \left(\int d^{2} x d^{2} \theta \theta^{\mu} \theta^{\nu} \Phi_{\mu \nu}=\int \Phi_{\mu \nu} d x^{\mu} \wedge d x^{\nu}\right)
\end{aligned}
$$

AKSZ action $\quad W=\int d^{2} x \int d^{2} \theta\left(\Phi_{a} \mathbf{d} \Psi^{a}+\Theta(\Psi, \Phi)\right)$

$$
=\int d^{2} x \int d^{2} \theta \Phi_{a}\left(\mathbf{d} \Psi^{a}+\frac{1}{2} f_{b c}^{a} \Psi^{b} \Psi^{c}\right)
$$

$$
=\int d^{2} x\left(\frac{1}{2} \phi_{a} \epsilon^{\mu \nu} F_{\mu \nu}^{a}-\epsilon^{\mu \nu} A_{a, \nu}^{*}\left(\partial_{\mu} c^{a}+f_{b c}^{a} A_{\mu}^{b} c^{c}\right)+\frac{1}{4} \epsilon^{\mu \nu} c_{a, \mu \nu}^{*} f_{b c}^{a} c^{b} c^{c}+\frac{1}{2} \epsilon^{\mu \nu} \phi_{\mu \nu}^{* b} f_{b c}^{a} \phi_{a} c^{c}\right)
$$

quantized 2-d. minimal BF action by formalism
fermions and 2-form boson can be identified as anti-fields

## AKSZ construction coincides with 2-dim. G-C-S action

Graded manifold $\mathcal{M}$ : coordinates: $\quad\left(q^{a}, p_{1 a}\right)$
grading
$p_{1 a}$ has independent hidden grading 1
Poisson bracket: $\quad\{F, G\}=\frac{F \overleftarrow{\partial}}{\partial q^{a}} \frac{\partial G}{\partial p_{1 a}}-\frac{F \overleftarrow{\partial}}{\partial p_{1 a}} \frac{\partial G}{\partial q^{a}}$
Hamiltonian, ex.2:

$$
\Theta\left(q^{a}, p_{1 a}\right)=\Theta_{1}\left(q^{a}, p_{1 a}\right)+\Theta_{3}\left(q^{a}, p_{1 a}\right)
$$

$$
\begin{aligned}
& \Theta\left(q^{a}, p_{1 a}\right)=\Theta_{1}\left(q^{a}, p_{1 a}\right)+\Theta_{3}\left(q^{a}, p_{1 a}\right) \\
& \Theta_{1}\left(q^{a}, p_{1 a}\right)=\frac{1}{2} f_{b c}^{a} p_{1 a} q^{b} q^{c} \\
& \Theta_{3}\left(q^{a}, p_{1 a}\right)=\frac{1}{3!} f_{a b c} p_{1 a} p_{1 b} p_{1 c} \\
& \left\{\Theta(q, p)=\frac{1}{2} f_{b c}^{a} p_{a} q^{b} q^{c}\right. \\
& \{\Theta, \Theta\}=\left\{\Theta_{1}+\Theta_{3}, \Theta_{1}+\Theta_{3}\right\}=0
\end{aligned}
$$

$$
\text { Map: } \Sigma \rightarrow \mathcal{M}:\left(x^{\mu}, \theta^{\mu}\right) \mapsto\left(q^{a}, p_{1 a}\right)=(\Psi(x, \theta), \Phi(x, \theta))
$$

component fields:

$$
\begin{aligned}
\Phi^{a}(x, \theta) & =\phi_{1}^{a}(x)+\theta^{\mu} \psi_{1, \mu}^{a}(x)+\frac{1}{2} \theta^{\mu} \theta^{\nu} B_{1, \mu \nu}^{a}(x) \\
\Psi^{a}(x, \theta) & =\hat{\psi}_{0}^{a}(x)+\theta^{\mu} \omega_{0, \mu}^{a}(x)+\frac{1}{2} \theta^{\mu} \theta^{\nu} \hat{\psi}_{0, \mu \nu}^{a}(x)
\end{aligned}
$$

$$
\begin{aligned}
W_{A K S Z}= & \int d^{2} x d^{2} \theta\left(\Phi^{a} \mathbf{d} \Psi_{a}+\Theta_{1}(\Phi, \Psi)+\Theta_{3}(\Phi, \Psi)\right) \\
= & \int d^{2} x d^{2} \theta\left(\Phi^{a} \mathbf{d} \Psi_{a}+\frac{1}{2} f_{b c}^{a} \Phi_{a} \Psi^{b} \Psi^{c}+\frac{1}{3!} f_{a b c} \Phi^{a} \Phi^{b} \Phi^{c}\right) \\
= & \int \operatorname{Tr}\left\{\phi_{1}\left(d \omega_{0}+\omega_{0}^{2}+\left\{\hat{\psi}_{0}^{(0)}, \hat{\psi}_{0}^{(2)}\right\}+\psi_{1}^{2}\right)\right. \\
& +\psi_{1}\left(d \hat{\psi}_{0}^{(0)}+\left[\omega_{0}, \hat{\psi}_{0}^{(0)}\right]\right)+\widehat{\left.B_{1}\left(\phi_{1}^{2}+\left(\hat{\psi}_{0}^{(0)}\right)^{2}\right)\right\}}
\end{aligned}
$$

Coincides with 2-dim. generalized C-S with fermions (different gradings anti-commute here)

## AKSZ construction and BV formalism

(ghost \#, hidden grading)

$$
\begin{array}{ll}
(0,1) & \Phi^{a}(x, \theta)=\phi_{1}^{a}(x)+\theta^{\mu} \psi_{1, \mu}^{a}(x)+\frac{1}{2} \theta^{\mu} \theta^{\nu} B_{1, \mu \nu}^{a}(x) \\
(1,0) & \Psi^{a}(x, \theta)=\hat{\psi}_{0}^{a}(x)+\theta^{\mu} \omega_{0, \mu}^{a}(x)+\frac{1}{2} \theta^{\mu} \theta^{\nu} \hat{\psi}_{0, \mu \nu}^{a}(x)
\end{array}
$$

$$
\swarrow \text { anti-fields identification }
$$

$$
\Phi^{a}(x, \theta)=\phi_{1}^{a}(x)-\theta^{\mu} \epsilon_{\mu \nu} \omega_{1 a}^{* \nu}(x)+\theta^{1} \theta^{2} c_{1}^{* a}(x)
$$

$$
\begin{equation*}
\Psi^{a}(x, \theta)=c_{0}^{a}(x)+\theta^{\mu} \omega_{0 \mu}^{a}(x)+\theta^{1} \theta^{2} \phi_{0}^{* a}(x) \tag{*}
\end{equation*}
$$

We define BV bracket:
physical field (ghost \#=0)

$$
\begin{gathered}
(F, G)=\int d^{2} x\left(\frac{F \overleftarrow{\partial}}{\partial \phi_{1 a}} \frac{\partial G}{\partial \phi_{0}^{* a}}-\frac{F \overleftarrow{\partial}}{\partial \phi_{0}^{* a}} \frac{\partial G}{\partial \phi_{1 a}}+\frac{F \overleftarrow{\partial}}{\partial \omega_{0 \mu}^{a}} \frac{\partial G}{\partial \omega_{1 a}^{* \mu}}-\frac{F \overleftarrow{\partial}}{\partial \omega_{1 a}^{* \mu}} \frac{\partial G}{\partial \omega_{0 \mu}^{a}}+\frac{F \overleftarrow{\partial}}{\partial c_{0}^{a}} \frac{\partial G}{\partial c_{1 a}^{*}}-\frac{F \overleftarrow{\partial}}{\partial c_{1 a}^{*}} \frac{\partial G}{\partial c_{0}^{a}}\right) \\
\left(\frac{F \overleftarrow{\partial}}{\partial \Phi}=(-1)^{\mid \Phi(|\Phi|+|F|)}(-1)^{[\Phi]([\Phi]+[F])} \frac{\partial F}{\partial \Phi}\right) \\
W_{A K S Z}=W_{B F}+W^{\prime} \quad \text { hidden grading }
\end{gathered}
$$

$$
W_{A K S Z}=W_{B F}+W^{\prime} \quad\left(W_{A K S Z}, W_{A K S Z}\right)=0
$$

Quantized minimal BF action + modification

$$
\begin{gathered}
W_{B F}=\int d^{2} x \frac{1}{2} \phi_{1 a} \epsilon^{\mu \nu} F_{\mu \nu}^{a}-\int d^{2} x\left(\omega_{1 a}^{* \mu}\left(\partial_{\mu} c_{0}^{a}+f_{b c}^{a} \omega_{0 \mu}^{b} c_{0}^{c}\right)+\frac{1}{2} f_{b c}^{a} c_{1 a}^{*} c_{0}^{b} c_{0}^{c}-\phi_{0}^{* a} f_{a b}^{c} c_{0}^{b} \phi_{1 c}\right) \\
W^{\prime}=\frac{1}{2} \int d^{2} x\left(f_{b c}^{a} \phi_{1 a} \epsilon_{\mu \nu} \omega_{1}^{* b \mu} \omega_{1}^{* c \nu}+f_{a b c} \phi_{1}^{a} \phi_{1}^{b} c_{1}^{* c}\right)
\end{gathered}
$$

Puzzle: $W_{A K S Z}$ is equivalent to the 2-dim. generalized Chern-Simons action with fermions and at the same time quantized BF action with extra term $W^{\prime}$

$$
\text { ghost number of } B_{1}^{a}=c_{1}^{* a}=-2
$$

$$
\begin{aligned}
& \theta^{1} \theta^{2} c_{1}^{* a}(x) \\
& \Phi^{a}(x, \theta)=\phi_{1}^{a}(x)+\theta^{\mu} \psi_{1, \mu}^{a}(x)+\frac{1}{2} \theta^{\mu} \theta^{\nu} B_{1, \mu \nu}^{a}(x) \\
& \Psi^{a}(x, \theta)=\hat{\psi}_{0}^{a}(x)+\theta^{\mu} \omega_{0, \mu}^{a}(x)+\frac{1}{2} \theta^{\mu} \theta^{\nu} \hat{\psi}_{0, \mu \nu}^{a}(x) \\
& c_{0}^{a}(x)
\end{aligned}
$$

On the other hand we can consider 2-dim. generalized C-S action as starting classical action :
simply two form gauge field with ghost number 0
(bosons only) $S_{2}^{k}(\psi=0)=\int \operatorname{Tr}\left[-\phi_{1}\left(d \omega_{0}+\omega_{0}^{2}\right)-\phi_{1}^{2} B_{1}\right]$

$$
\begin{array}{ll} 
& \delta \phi_{1}=\left[\phi_{1}, v_{0}\right], \\
\text { gauge trans. } & \delta \omega_{0}=d v_{0}+\left[\omega_{0}, v_{0}\right]+\left\{\phi_{1}, u_{1}\right\}, \\
& \delta B_{1}=-d u_{1}-\left\{\omega_{0}, u_{1}\right\}+\left[\phi_{1}, b_{0}\right]+\left[B_{1}, v_{0}\right],
\end{array}
$$

We need to introduce the following fields:

$$
\begin{array}{ll}
X^{a},(0,1), Y^{a},(1,0), Z^{a},(2,1), & \\
\text { (ghost number, hidden grading) } \\
X^{a}=\phi_{1}^{a}+\cdots & \\
Y^{a}=\cdots+\theta^{\mu} \omega_{0 \mu}+\cdots & \\
\text { finite number of fields is not } \\
Z^{a}=\cdots+\frac{1}{2} \theta^{\mu} \theta^{\nu} B_{1 \mu \nu} & \\
\text { with physical to obtain nilpotent } Q \\
\phi_{1}, \omega_{0}, B_{1} \text { ghost } \#=0
\end{array}
$$

We consider a supermanifold which has the following coordinates:

$$
\left(X_{(2 m)}^{a}, Y_{(2 m+1)}^{a}\right), \quad(m=-\infty, \cdots, \infty)
$$

where the suffix denotes ghost number. X has hidden deg. 1 and Y has 0 .
We can find deg. 1 nilpotent vector field (BRST operator):

$$
\begin{gathered}
\mathcal{Q}=\sum_{m} \mathcal{Q}_{m}, \quad \mathcal{Q}^{2}=0 \\
\mathcal{Q}_{2 m+1}=\frac{A}{2} f_{b c}^{a}\left(\sum_{k} Y_{(2 k+1)}^{b} Y_{(-2 k+2 m+1)}^{c}\right) \frac{\partial}{\partial Y_{(2 m+1)}^{a}}+\frac{B}{2} f_{b c}^{a}\left(\sum_{k} X_{(2 k)}^{b} X_{(-2 k+2 m+2)}^{c}\right) \frac{\partial}{\partial Y_{(2 m+1)}^{a}} \\
\mathcal{Q}_{2 m}=A f_{b c}^{a}\left(\sum_{k} Y_{(2 k+1)}^{b} X_{(-2 k+2 m)}^{c}\right) \frac{\partial}{\partial X_{(2 m)}^{a}} \quad(A, B=\text { const. })
\end{gathered}
$$

We can find hamiltonian $\Theta$ satisfying:

$$
\mathcal{Q}^{2} \cdot=\{\Theta,\{\Theta, \cdot\}\}=-\frac{1}{2}\{\{\Theta, \Theta\}, \cdot\}=0
$$

## Hamiltonian:

$\Theta=\frac{A}{2} \sum_{k} \sum_{m} f_{a b c} Y_{(2 k+1)}^{b} Y_{(-2 k+2 m+1)}^{c} X_{(-2 m)}^{a}+\frac{B}{3!} \sum_{k} \sum_{m} f_{a b c} X_{(2 k)}^{a} X_{(-2 k+2 m+2)}^{b} X_{(-2 m)}^{c}$
AKSZ action: $\quad S=\int d^{2} x d^{2} \theta\left(\sum_{m} X_{(-2 m) a} \mathbf{d} Y_{(2 m+1)}^{a}+\Theta\right)$
We already found in our BV minimal action for 2-dim. G-C-S with infinite reducibility. (N.K., Suehiro, Tsukioka \& Umetsu '98)

$$
\begin{aligned}
\tilde{S}= & -\int d^{2} x \operatorname{tr} \sum_{n=-\infty}^{\infty}\left\{C_{n}^{B}\left(\epsilon^{\mu \nu} \partial_{\mu} C_{n \nu}^{B}+\sum_{m=\infty}^{\infty}\left(\epsilon^{\mu \nu} C_{m \mu}^{B} C_{-(m+n) \nu}^{B}+\left\{C_{m}^{F}, \tilde{C}_{-(m+n)}^{F}\right\}-\epsilon^{\mu \nu} C_{m \mu}^{F} C_{-(m+n) \nu}^{F}\right)\right)\right. \\
& +\tilde{C}_{n}^{B} \sum_{m=-\infty}^{\infty}\left(C_{m}^{F} C_{-(m+n)}^{F}+C_{m}^{B} C_{-(m+n)}^{B}\right) \\
& \left.-C_{n}^{F} \epsilon^{\mu \nu}\left(\partial_{\mu} C_{-n \mu}^{F}+\sum_{m=-\infty}^{\infty}\left[C_{m \mu}^{B}, C_{-(m+n)]}^{F}\right]\right)\right\}
\end{aligned}
$$

infinite reducibility:

$$
\text { gauge tr. } \quad \mathcal{V}_{2}=\delta_{1} \mathcal{A}=\left[Q+\mathcal{A}, \mathcal{V}_{1}\right] \quad \text { (eq. of motion) } \quad \mathcal{F}=0
$$

$$
\delta_{2} \delta_{1} \mathcal{A}=\left[Q+\mathcal{A}, \mathcal{V}_{2}\right]=\{Q+\mathcal{A},[Q+\mathcal{A}, \mathcal{V}]\}=\frac{1}{2}[\{Q+\mathcal{A}, Q+\mathcal{A}\}, \mathcal{V}]=\frac{1}{2}[\mathcal{F}, \mathcal{V}]=0
$$

In the current AKSZ procedure we can identify:
renaming

$$
\begin{aligned}
Y_{(2 m+1)}^{a}= & \psi_{(2 m+1)}^{a}+\theta^{\mu} \omega_{(2 m) \mu}^{a}+\frac{1}{2} \theta^{\mu} \theta^{\nu} \hat{\psi}_{(2 m-1) \mu \nu}^{a} \\
X_{(2 m)}^{a}= & \phi_{(2 m)}^{a}+\theta^{\mu} \psi_{(2 m-1) \mu}^{a}+\frac{1}{2} \theta^{\mu} \theta^{\nu} B_{(2 m-2) \mu \nu}^{a} \\
\Psi^{a}=\sum_{m} Y_{(2 m+1)}^{a} & =\sum_{m} \psi_{(2 m+1)}^{a}+\theta^{\mu} \sum_{m} \omega_{(2 m) \mu}^{a}+\frac{1}{2} \theta^{\mu} \theta^{\nu} \sum_{m} \hat{\psi}_{(2 m-1) \mu \nu}^{a} \\
& =\psi^{a}+\theta^{\mu} \omega_{\mu}^{a}+\theta^{\mu} \theta^{\nu} \hat{\psi}_{\mu \nu}^{a} \\
\Phi^{a}=\sum_{m} X_{(2 m)}^{a} & =\sum_{m} \phi_{(2 m)}^{a}+\theta^{\mu} \sum_{m} \psi_{(2 m-1) \mu}^{a}+\frac{1}{2} \theta^{\mu} \theta^{\nu} \sum_{m} B_{(2 m-2) \mu \nu}^{a} \\
& =\phi^{a}+\theta^{\mu} \psi_{\mu}^{a}+\theta^{\mu} \theta^{\nu} B_{\mu \nu}^{a}
\end{aligned}
$$

In this way classical fields $\phi^{a}, \omega_{\mu}^{a}, B_{\mu \nu}^{a}$ can be introduced as physical fields having ghost number zero for bosons. At this stage fermions still carry ghost number. We can extend to introduce fermionic classical fields (ghost \#=0). We need to introduce infinite ghost fields.

## What is the physical meaning of the result?

$\longrightarrow$ Quantization of topological Super Point Particle Field Theory
We introduce particle coordinates: $\quad\left(x^{\mu}(\tau), p_{\mu}(\tau)\right) \quad\left(\theta^{\mu}(\tau), \eta_{\mu}(\tau)\right)$
nilpotent BRST transformation

$$
\begin{aligned}
& \delta_{B} x^{\mu}(\tau)=\theta^{\mu}(\tau) \\
& \delta_{B} \theta^{\mu}(\tau)=0 \\
& \delta_{B} p_{\mu}(\tau)=0 \\
& \delta_{B} \eta_{\mu}(\tau)=-p_{\mu}(\tau)
\end{aligned}
$$

Consider the following BRST exact action (gauge fixing of topological point particle):

$$
\begin{aligned}
S=-\int d \tau \delta_{B}\left(\eta_{\mu}\left(\dot{x}^{\mu}-p^{\mu}\right)\right) & =-\int d \tau\left(\delta_{B} \eta_{\mu}\left(\dot{x}^{\mu}-p^{\mu}\right)-\eta_{\mu} \delta_{B} \dot{x}^{\mu}\right) \\
& =\int d \tau\left(p_{\mu} \dot{x}^{\mu}-p_{\mu} p^{\mu}+\eta_{\mu} \dot{\theta}^{\mu}\right)
\end{aligned}
$$

equation of motion:

$$
2 p_{\mu}=\dot{x}^{\mu} \quad S_{\text {on-shell }}=-\int d \tau\left(\frac{1}{4} \dot{x}^{\mu} \dot{x}_{\mu}+\eta_{\mu} \dot{\theta}^{\mu}\right)
$$

conjugate momentum:

$$
\begin{aligned}
& \pi_{x, \mu}=\frac{\mathcal{L} \overleftarrow{\partial}}{\partial \dot{x}^{\mu}}=p_{\mu} \\
& \pi_{\theta, \mu}=\frac{\mathcal{L} \overleftarrow{\partial}}{\partial \dot{\theta}^{\mu}}=\eta_{\mu}
\end{aligned}
$$

commutation relation:

$$
\begin{aligned}
{\left[x^{\mu}, p_{\nu}\right] } & =i \delta_{\nu}^{\mu} \\
\left\{\theta^{\mu}, \eta_{\nu}\right\} & =i \delta_{\nu}^{\mu}
\end{aligned}
$$

first quantized BRST charge: $Q_{B}=i \theta^{\mu} p_{\mu}=\theta^{\mu} \partial_{\mu}=\mathbf{d}$
super coordinate eigenstate: $\mid x, \theta>$
field of super point particle:
bosonic: $\quad \Phi(x, \theta)=<x, \theta \left\lvert\, \Phi>=\phi(x)+\theta^{\mu} \psi_{\mu}(x)+\frac{1}{2} \theta^{\mu} \theta^{\nu} B_{\mu \nu}\right.$
fermionic: $\quad \Psi(x, \theta)=<x, \theta \left\lvert\, \Psi>=\hat{\psi}(x)+\theta^{\mu} \omega_{\mu}(x)+\frac{1}{2} \theta^{\mu} \theta^{\nu} \hat{\psi}_{\mu \nu}\right.$

## Point particle field theory

physical state condition: $\quad \begin{aligned} &<x, \theta\left|Q_{B}\right| \Phi>=\theta_{\mu} \partial_{\mu} \Phi(x, \theta)=0 \\ &<x, \theta\left|Q_{B}\right| \Psi>=\theta_{\mu} \partial_{\mu} \Psi(x, \theta)=0\end{aligned}$

Since BRST symmetry is nilpotent, there is gauge symmetry:

$$
\delta\left|\Phi>=Q_{B}\right| \Lambda_{B}>, \quad \delta\left|\Psi>=Q_{B}\right| \Lambda_{F}>
$$

Action satisfying physical state condition:

$$
S=<\Psi\left|Q_{B}\right| \Phi>=\int d^{2} x d^{2} \theta \Psi(x, \theta) Q_{B} \Phi(x, \theta)
$$

We can introduce Yukawa interaction and 3-point interaction in BRST invariant way:

$$
S=\int d^{2} x d^{2} \theta\left(\Phi^{a} \mathbf{d} \Psi_{a}+\frac{1}{2} f_{b c}^{a} \Phi_{a} \Psi^{b} \Psi^{c}+\frac{1}{3!} f_{a b c} \Phi^{a} \Phi^{b} \Phi^{c}\right)
$$

Quantized interacting topological super particle field theory action
This coincides with even dimensional generalized Chern-Simons action!

## Comparison with AKSZ construction

Introduce grading: $\quad$ deg. of $\left(q^{a}, q_{a}\right)=(1,0)$

$$
\begin{gathered}
\{F, G\}=\frac{F \overleftarrow{\partial}}{\partial q^{a}} \frac{\partial G}{\partial q_{a}}-\frac{F \overleftarrow{\partial}}{\partial q_{a}} \frac{\partial G}{\partial q^{a}} \quad \Theta=\frac{1}{3!} f_{a b c} q^{a} q^{b} q^{c}, \quad\{\Theta, \Theta\}=0 \\
S=\int\left(\frac{1}{2} q_{a} \mathbf{d} q^{a}+\frac{1}{3!} f_{a b c} q^{a} q^{b} q^{c}\right)
\end{gathered}
$$

We claimed this structure can be extended more general framework with 3 gradings:

$$
\begin{aligned}
q^{a} \rightarrow \mathcal{A}^{a} & =\mathbf{1} \psi_{1}^{a}+\mathbf{i} \hat{\psi}_{0}^{a}+\mathbf{j} A_{0}^{a}+\mathbf{k} \hat{A}_{1}^{a} \quad Q=j d \\
\mathcal{V}^{a} & =\mathbf{1} \hat{a}_{0}^{a}+\mathbf{i} a_{1}^{a}+\mathbf{j} \hat{\mathbf{a}}_{1}^{a}+\mathbf{k} \alpha_{0}^{a}
\end{aligned}
$$

$$
\begin{aligned}
& S_{G C S}=\int \operatorname{Tr}\left(\frac{1}{2} \mathcal{A} Q \mathcal{A}+\frac{1}{3} \mathcal{A}^{3}\right) \quad\left(\mathcal{A}=\mathcal{A}^{a} T^{a}, \quad \mathcal{V}=\mathcal{V}^{a} T^{a}\right) \\
& \delta \mathcal{A}=Q \mathcal{V}+[\mathcal{A}, \mathcal{V}]
\end{aligned}
$$

$$
\begin{array}{rlr}
\mathcal{A}^{a} & =\mathbf{1} \psi_{1}^{a}+\mathbf{i} \hat{\psi}_{0}^{a}+\mathbf{j} A_{0}^{a}+\mathbf{k} \hat{A}_{1}^{a} & \\
& =\mathbf{1} \psi_{1}^{a}+\mathbf{k} \hat{A}_{1}^{a}+\mathbf{i}\left(\hat{\psi}_{0}^{a}-\mathbf{k} A_{0}^{a}\right) & \text { quaternion }+ \text { commuting different gradings } \\
& \rightarrow\left(\psi_{1}^{a}+\hat{A}_{1}^{a}\right)+\left(\hat{\psi}_{0}^{a}-A_{0}^{a}\right) & \text { no quaternion }+ \text { anti-commuting different } \\
& \equiv \Phi_{1}^{a}+\Psi_{0}^{a}=q^{a} & \\
& & \text { gradings }
\end{array}
$$

no-quaternion +3 total gradings:

$$
\begin{aligned}
S & =\int\left(\frac{1}{2} q_{a} \mathbf{d} q^{a}+\frac{1}{3!} f_{a b c} q^{a} q^{b} q^{c}\right) \\
& =\int\left[\frac{1}{2}\left(\Phi_{1 a}+\Psi_{0 a}\right) \mathbf{d}\left(\Phi_{1}^{a}+\Psi_{0}^{a}\right)+\frac{1}{3!} f_{a b c}\left(\Phi_{1}^{a}+\Psi_{0}^{a}\right)\left(\Phi_{1}^{b}+\Psi_{0}^{b}\right)\left(\Phi_{1}^{c}+\Psi_{0}^{c}\right)\right] \\
& =S_{E}+S_{O}
\end{aligned}
$$

target space dim. Quantized topological super particle field theory actions even dim. $\quad S_{E}=\int\left(\Phi_{1 a} \mathbf{d} \Psi_{0}^{a}+\frac{1}{2} f_{a b c} \Phi_{1}^{a} \Psi_{0}^{b} \Psi_{0}^{c}+\frac{1}{3!} f_{a b c} \Phi_{1}^{a} \Phi_{1}^{b} \Phi_{1}^{c}\right)$
odd dim. $\quad S_{O}=\int\left(\frac{1}{2}\left(\Phi_{1 a} \mathbf{d} \Phi_{1}^{a}+\Psi_{0 a} \mathbf{d} \Psi_{0}^{a}\right)+\frac{1}{2} f_{a b c} \Psi_{0}^{a} \Phi_{1}^{b} \Phi_{1}^{c}+\frac{1}{3!} f_{a b c} \Psi_{0}^{a} \Psi_{0}^{b} \Psi_{0}^{c}\right)$ hidden grading is needed for $S_{O}$

## Conclusion

- Quantization of G-C-S actions is reformulated by AKSZ formalism.
- AKSZ formulation of G-C-S is quantized topological super point particle field theory for arbitrary even- and odd-dimensions.
- Odd dimensional formulation needs 3rd grading.
- To keep component fields of G-C-S as physical classical fields infinite components are needed.

