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Introduction

In world—sheet approach,
a consistent CFT gives a string vacuum

In general, its target—space interpretation not obvious

so, “non—geometric’ backgrounds in string theory

rather ubiquitous



o dualities are symmetries of string theory

= transition fn. for target space
may involve duality trans. /
duality

o T—folds” in the case of T—duality  [Dabholkar—Hull *02 . Hull " 04]

more generally,
this type of non—geometric BG: “monodrofolds”

relevant to string vacua, dualities

relevant to “new’ formulation of string theory
w/ manifest dualities (Double Field Theory (DFT) etc)



they are analyzed systematically by sugra, DFT:---

at string scale beyond low energy analysis,
need world—sheet approach

take a step in this direction



In this talk, we discuss

1. a systematic construction of modular inv.
partition fn. for T—folds based on lattice

2. application :

non—susy backgrounds w/ small cosmological const.

3. use of conformal interfaces
[ world—sheet objects implementing symmetry (T—duality) ]
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Partition function for T—folds
(bosonic Case) [Sugawara—Y.S.-Wada ’ 15, ’ 16]



T—folds

o our set up of T—folds

Target Space World—sheet partition fn.

0 =
5 fiber torus /

© T—dual orbifold by T—dual twist

1 .
S — . [
base circle o) (Shlft)R X ( dual)Td

from world—sheet point of view, T—folds are generally
described by (special class of) asymmetric orbifolds

e.g, twistby X' - X' X' —X°

* construction of asymmetric orbifolds not automatic



structure of partition fn. for T—folds

Z(7) = Zn(1) X Y Zisyy(T) X 2y (7)

w,me”Z

[non—compact part] [S! part] [ Td part]

" w, m : spatial and temporal winding

T = 71 + 179 : torus modulus

* for a free boson X 5" () = R e—fjf [wr+m|?
on circle of radius R~ (W™ / V2N (7T)]?

by construction, Z(Toflm) — tr((;quo—%qﬂo—%) q=c

o = (Shift)Rl &) (T—dual)Td



since

78 (r+D) =25 (1), Z5 (—1/7)=

(w,m) (w,m~+w) (w,m)

d
if Z(jfzu,m) has similar modular properties

= total Z is modular inv.

problem is to find such Td / construct Z

Useful to formulate problem

In terms of momentum lattices

Sl

(ma_w)

(7)



Partition fn. from lattices



Momentum lattice

moduli of 7% compactification

Eij L= Gij -+ Bij [ (metric) + (anti-symm); ij=1, .., d ]

momentum lattice

P = €i'n; — Eyuw!], P, = el[n + ELwl] (n,w' € Z)

[vielbein] [momentum, winding]

= (d+d)-dim lattice \: P(m,w) := (p,p)

w/ Lorentzian product P o P :=pp' — pp/



Hamiltonian is invariant under O(d,d,Z) trans.

E — g(E) = (aE +b)(cE +d)™*

[ a b . t(O I)_(O I)
g.—(c d)EO(d,d,Z) A NN A W

untwisted torus partition fn.

¢ 1 TITP? —TiTH?
Z(j(;,O)(T) = PTGIE Z et !
' (p,D)EA [lattice sum]



T—dual twist

we focus on simple T—dual twist
(X", X" — (X', —X") [i,=1,..d]
o = (shift)gr1 ® (—1R)7a

o I—fold CFTs are defined at fixed points in moduli
= E=g(E)=(aE+b)(cE+d)™" [eg R=d/R ]

') T—dual acts in the same Hilbert space [ cf. sugra analysis ]

corresponding O(d,d) element [Erler * 96]

BG™' —BG'B+ @G

gsp — (
Gt —G'B

) € 0(d,d,7)



after one twist

d/2 1 wt Gw
Z(o1)( T) = Os(T)  — Z ¢

" <T) FEweZd

Ou(7) = 0,(7)0(7)/0*(T)  [theta, eta fn.]

[Euclidean lattice sum]

general Z(w m) May be obtained by taking modular orbit
(if any)

o modular properties are well-controlled

for Lie algebra lattices

* more general than free—fermion construction



Lie algebra (Englert—-Neveu) lattices

set torus moduli to be

ZJ_CZ](Z>J) T CZZ7EZ]_O(Z<J)
[ Cij : Cartan matrix for G ]

= level 1 affine Lie—algebra symmetry [Elitzur et al ’ 87]

partition fn. (untwisted)
2 :
/ E | G(r [ character of conjugacy
(OO)( ) a‘on( )‘ class a for G ]



« condition gsp € O(d,d,Z) is satisfied for

A1, D, (r:even), E, Ejg

[note G =207 ! in 9sD ]

partition fn. w/ one twist

TG d/2
Z(o,1[) (1) = Oaa (1) XGoor (7)



by explicit modular trans.

TG

(w,m) for Y

* obtain 7 w, m - 7,

* find desired modular properties

(w,m) — (w,m+w), (w,m) — (m,—w)
T—T+1 T— —1/7



o« combining these with other parts, we obtain
modular invariant, & " exact partition fn. for T—folds

TG
Z(T) = ) X Z Z XZ(w[m;(T)

w,meZ

a systematic construction of world—sheet
partition fn. for T—folds from Lie algebra lattices
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T1[Aq]
Ziap) (T) =
( A 2 A 2 ]
|X01(T)‘ + ‘Xll(T)‘ (a, b : even]
T b3 8 %l Aq ‘a . Al -
€8 34(7) 7 | X4 () +ix 2N (T) (a: even; b : odd]
< T 1 i . _
e~ A Oq3(T)° - \% Xgh (7) + befl (7')} (a: odd; b : even]
) 1 -
| FOuM - G0 (1) it ()| Tabodd

XE = E X
gy 05(27) gy 0o (27)
WO =NE s TG

16-1



T\ D,
Z(a,lg) ](T) =
( 2\?77“(17)|27” [ O5(T)| " + |0a(7)|”" + |02(7) QT} [a, b : even]
< o"irab @34(7)5.2773(7) 05(r) + ¥ o65(r)] 2 - even: b : odd]
e~ ab @y (7)? 2773(T> 03(7) + " 05(r)| a - odd: b : even]
TR 277}(7) 0;(r) + F ()] La b odd
| |
where  x;"(7) = 27 () 05(7) + 05()] , X" (7) = W[QQ(T) —0,(7)]
97”
&) = (7) = g2

= obtained also by free fermion construction
|6-2



a, b : even]
(7) + (_i)aX€7 (T)] a: even: b : odd]
(M) + (=X (1) [a:odd; b : even]
() + (=) (1) [a,b - odd]

0:(27)08(7) + 05(27) (65(7) + 65(7) )

_93(27)03(7) + 62(27) (63(7) - 92(7))_
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( |X§8 (7.)‘2 a, b : even]
75 Ouu(r) - x&*(r)  [a:even;b: odd]
Z(aab) (7-) = 4 Eg P -
O3(7) - Xxo*(7) a: odd; b : even]
4
| —624(7) - Xx¢"(T)  [ab:odd]

where o™ () = Xp " + X

- E8 lattice is even, self-dual = modular properties are trivial

= construction is applied to other even, self—dual lattices

16-4



Uplift of T—duality on world—sheet

T4[G]

(w,m)

phases in 7 imply that

action on fiber torus is not Z2 cf. half—integral spin for su(2)

action of T—duality on world—sheet CFT

generally uplifted [cf. Aoki-D’ Hoker—Phong ’ 04]

a systematic analysis based on lattice [Harvey-Moore " 17]

=> more general asymmetric orbifold toward ‘Moonshine’ ?

cf. Monstrous CFT [Frenkel-Lepowski—Meurman ’ 86]

“no—go theorem” for Mathieu Moonshine
[Gaberdiel-Hohenegger—Volpato ~ 17]

|7



Case of Superstrings



Case of superstrings

arguments are applied also for superstrings
twist on fermions o : ¥l — —b

taking into account Ramond sector, bosonization,
essentially two cases of twist on world—sheet fermions

1) o2=1 => half-susy from right—mover

i) o= (—1)"" => no susy from right—mover

F'r : space—time fermion #

corresponding partition fn. for fermion

i) fowm)(T) i) Frwm(7)



half—susy fermion block :

f(a,b) (7-) —
(—1)% (%)2(%)2_(%)2(%)2%}(:0) (a €27, be 27 +1)
< (—1)3 (%)2 (%2 g 02— (9;)22(9”)22} (=0) (a€2Z+1, be?27)
—e%‘ab{w(%) () = (%) (%) }(=0) (@€2Z+1, be2Z+1)
\ (%3)4— (%)4— (%2)4(= 0) (a € 2Z, b e 27)

19-1



non—susy fermion block :

J/E\(a,b) (7-) —

(a € 2Z, b e 2Z + 1)
(e €2Z+1, be 27)

(a€e2Z+1, be2Z+1)

(a € 47, b € A7)

(a € AZ, b € AZ + 2)
(a €4Z +2, b € 47)
(

a€dZ +2, bedl +2)

19-2



these also have desired modular properties

(w,m) — (w,m+w), (w,m) — (m,—w)

T— 7T+ 1 T— —1/7
combining modular blocks

variety of partition fn. for T—folds
in type Il and hetero. w/ appropriate # of susy

e-g-) Z(T) — ZR1’3><31 (7’)
% Z Z(w m) (w [m)](T) ' j(T) ' f(w,m) (T)

w,meL

Lo
[ 3/4 susy in type II ] J = ¥(93_94—92)

20



Non—geometric fluxes

under T-duality H < w < @ < R

geometric non—geometric
[Shelton—Taylor—Wecht ~ 05]

by TP compactification, gauging
[Shelton—Taylor—-Wecht ' 05, Dabholkar—Hull * 05]

(20, 2Zn] = wiynZp + HynpXF

) (M,N =1, ..., D)
20, XY = =0 p XY 4 Qaf 2P
X, XN = —Qp N AT + QYN Zp

Zyr, Xar o generators corresponding to 9 > B

21



read off charges and vertex op.

from world—sheet partition fn. of asymmetric orbifolds

[Condeescu—Florakis—Kounnas—Lust ~ 13]

= OPE = gauge algebras

- asymmetry in the fiber = Q-flux

- asymmetry in the base = R—flux

22



Application :

Non—supersymmetric vacua w/
vanishing cosmological constant (1-loop)

[Sugawara—Y.S.-Wada ' 15, ' 16]



Non—supersymmetric vacua

further add twist by space—time fermion # in type II

c — o =0®(-1)"
— (Shift)Rl & (—1R)Td X (—1)FL
(@) = (-1

= break all susy
e.g.) Z(T) — ZRL?’XSl (T)

T4 Dy 3 >
X Z Z(w m) (w [m) | (T)f(2w,2m) (T)f(w,m) (T)

w,meZ

23



]?(w,m) (1) =0 for m or w is odd

ﬁZme) (7') = ( for m and w are even

=> partition fn. Z vanishes (in spite that susy is broken)

= cosmological const at 1 loop vanishes

can check unitarity, absence of tachyon

» this mechanism generally holds

24



Comments:

windings w,m prevent supercharges from twisted sectors

Kachru—Kumar—Silverstein ~ 98 : non—abelian orbifold

< T-fold structure simplifies construction

T—folds provide simple setting of
non—susy vacua w/ vanishing cosmological const

25



Application :

Non—-BPS D-branes w/
vanishing cylinder amplitudes

[Sugawara—Y.S.—Uetoko ’ 17]



Non—-BPS D-branes w/ vanishing
cylinder amplitudes

by similar orbifolding breaking all susy from left movers
= no BPS D—-branes :

G+ M%Q5)1B) =0

can construct D—branes w/ vanishing cylinder amplitudes

@ﬁ = (Blg*"|B) = 0
bulk susy = loop amplitudes vanish @ =0

= non—perturbatively small cosmological const.

from non—BPS D—-branes 2 §
24




Use of conformal interfaces/defects



Conformal interfaces/defects

a generalization of conformal boundary/D—brane

CFT CFT1 | CFT2

boundary interface (defect)

condition of conformal invariance

T (z) —Ti(2) ~ Tu(z) — T(Z) CFT1 | CFT2

[along interface]

[Won—-Affleck ~ 94, Petkova—Zuber ’00]
26



Topological interfaces/defects

when they satisfy stronger condition

= freely deformed; called topological
[Petkova—Zuber ' 00, Bachas—Gaberdiel * 04]

topological interfaces generate symmetries/dualities
[Frohlich-Fuchs—Runkel-Schweigert * 04, " 07]

27



two subclasses of top. interfaces

group—like defects : generate symmetries

Jinverse st. D-D =1 (e.g., Z2 for Ising)

duality defects : generate dualities

fuse into group—like defects (e.g.. KW duality for Ising)

D-D = Zk Dy [group-like]

28



Interfaces in T° compactification

conformal interfaces for T¢ compactification

[Bachas—de Boer—Dijkgraaf—-Ooguri ’ 01;
Y.S. " 11; Bachas—Brunner—Roggenkamp ’ 12]

1 SIJ 1I ~1J —SIJ 171 2J SIJ ~21 ~ 1J +Séé] iIOéQJ) .

eﬁ —n%n 21 “*n n

Io = > ISIEPNRIPY )1L - 2n(—Sig BN lar(—5 |

ﬁlJ,ﬁQJ

1(2) 412 . modes of CFT1(2)

an ) n

topological = S11 = S22 =0

S group—like
no pr lon in zero—m = . -
O projectio ero—modes implement T—duality

— duality defect

projection in zero—modes | L
T—duality + projection

29



Conformal interfaces :

(probably) fundamental objects implementing
T—duality on world—sheet

30



Application to T—folds

twist by group—like defects = partition fn of T—folds

= actual construction goes back, e.g., to our previous one

31



Application to “monodrofold”

twist by duality defects = monodrofolds of T—fold type
[Sugawara—Y.S. " 15]

* from CFT point of view, they are generalized orbifolds’
[twist by not—exact symmetry]

[cf. Frohlich, Fuchs, Runkel, Schwegert’ 09, Brunner, Carqueville, Plencner " 13, ...]

modular inv. dictates how to sum up interfaces (moduli)

32



Transition of wrapped/unwrapped strings

[cf. Sakatani]

strings wrapped on base circle Target Space
receive T—dual monodromy @ ;

T
transition to ordinary string ~ fiber torus
(monodromy—free) would be g © T—dual

Vi base circle

new effects/phenomena?

33



Summary



Summary

T—folds are non—geometric backgrounds of strings

* involve T—duality in transition fn.

* Intrinsic to string theory
T—duality

obtained exact partition fn. for T—folds

systematically by using momentum lattices

T—fold set—up naturally leads to non—susy string vacua
w/ vanishing cosmological constant (at least) at 1 loop

34



from such asymmetric orbifolds, can obtain
susy vacua w/ stable non—BPS D-branes

= non—perturbatively small cosmological constant

o conformal interfaces:

fundamental objects implementing T—duality on world—sheet

asymmetric orbifold by group—like defects = T—folds
asymmetric orbifold by general defects = monodrofolds

amplitudes w/ interfaces :
transition from wrapped to unwrapped strings
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