A modified Penrose limit and generalized pp-wave solutions

Suguru Okumura

Department of physics, Kyoto U.

work in progress with Jun-ichi Sakamoto/Kentaroh Yoshida

String: T-duality, Integrability and Geometry 3/7 2019 @ Tohoku U. 1

Introduction

The generalized supergravity [Arutyunov-Frolov-Hoare-Roiban-Tseytlin, 1511.05795]

Classical consistency Kappa symmetry of GS action [Tseytlin-Wulf, 1605.04884]

Quantum consistency Weyl anomaly cancellation [Sakamoto-Sakatani-Yoshida, 1703.09213]

[Jose J. Fernandez-Melgarejo-Sakamoto-Sakatani-Yoshida, 1811.10600]

The gSUGRA may give a new consistent b.g. of the superstring

Introduction

A main interest

How to analyze the superstrings on such deformed backgrounds

It is difficult to analyze the superstring on a curved background.

We assume one can obtain a non-trivial, but solvable background by the Penrose limit

cf. Penrose limit of $AdS_5 \times S^5 \rightarrow$ maximally supersymmetric pp-wave

Motivation

Assumption : A similar relation holds for YB deformed $AdS_5 \times S^5$.

Penrose limit

Such a relation still holds for deformed pp-wave b.g.

We may analyze the superstring on deformed b.g.

Plan of this talk

0. Introduction

- 1. Review of the standard Penrose limit (Poincare AdS)
- 2. A (modified) Penrose limit of deformed b.g.
 - > A gravity dual of a NCYM
 - ➤ A non-unimodular e.g.
- 3. Summary and discussion

Review of the standard Penrose limit

AdS⁵ × S₅ metric

$$ds_{S^5}^2 = d\psi^2 + \sin^2 \psi ds_{S^4}^2$$

$$ds^2 = \frac{-dt^2 + dz^2 + (dx^1)^2 + (dx^2)^2 + (dx^3)^2}{z^2} + ds_{S^5}^2$$

Step1 Expanding the background around a null geodesics on (t, z, ψ) plane

$$\left(\begin{array}{c} r = \frac{1}{\mu} \sin \mu u \\ t = -\mu R^2 \cot \mu u - \mu R y^4 + v \\ \psi = -\mu u - \frac{1}{R} y^4 \end{array}\right)$$

(And rescale other coordinates like $x^i = Ry^i$)

Step2 $R \to \infty$ limit

Review of a standard Penrose limit

By taking $R \to \infty$ limit,

$$ds^{2} = -2dudv + \frac{\sin^{2}(\mu u)}{\mu^{2}} \sum_{I=1}^{8} (dy^{I})^{2}$$

$$\int \left(u = x^{+} \quad y^{I} = \frac{\mu}{\sin(\mu x^{+})} x^{I} \quad v = x^{-} - \frac{\mu}{2} \cot(\mu x^{+}) \sum_{I=1}^{8} (x^{I})^{2} \right)$$

The maximally supersymmetric pp-wave sol.

$$ds^{2} = -2dx^{+}dx^{-} - \mu^{2} \sum_{I=1}^{8} (x^{I})^{2} (dx^{+})^{2} + \sum_{I=1}^{8} (dx^{I})^{2}$$
$$F_{5} = 4\mu dx^{+} \wedge \left(dx^{1} \wedge dx^{2} \wedge dx^{3} \wedge dx^{4} + dx^{5} \wedge dx^{6} \wedge dx^{7} \wedge dx^{8} \right)$$

Plan of this talk

0. Introduction

- 1. Review of the standard Penrose limit (Poincare AdS)
- 2. A (modified) Penrose limit of deformed b.g.
 - A gravity dual of a NCYM
 - ➤ A non-unimodular e.g.
- 3. Summary and discussion

An example of the Penrose limit of the deformed b.g.

Ex. A gravity dual of a non-commutative gauge theory

$$r = \frac{1}{2}P_1 \wedge P_2 \qquad \text{[Matsumoto, Yoshida, 1404.3657]}$$

Abelian r-matrix A solution to the standard type IIB SUGRA

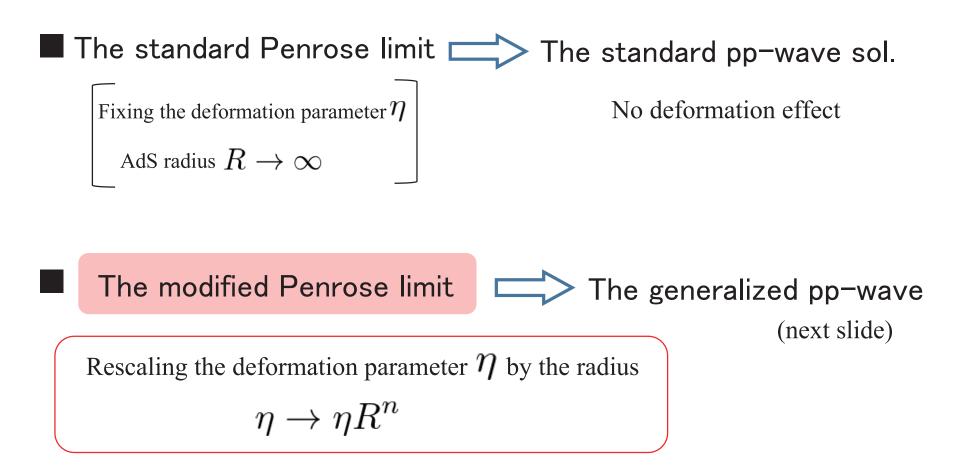
$$ds^{2} = R^{2} \left[\frac{-dt^{2} + (dx^{3})^{2} + dz^{2}}{z^{2}} + \frac{z^{2}[(dx^{1})^{2} + (dx^{2})^{2}]}{z^{4} + \eta^{2}} + ds^{2}_{S^{5}} \right]$$

$$B_{2} = \frac{\eta R^{2}}{z^{4} + \eta^{2}} dx^{1} \wedge dx^{2}$$

$$B_{2} = \frac{\eta R^{2}}{z^{4} + \eta^{2}} dx^{1} \wedge dx^{2}$$

$$Hashimoto, Itzhaki / Maldacena, Russo , 1999]$$

A modified Penrose limit



An example of the modified Penrose limit

Results of the modified Penrose limit with $\eta \to \eta R^4$

$$ds^{2} = -2dx^{+}dx^{-} - \mu^{2}W \cdot (dx^{+})^{2} + \frac{\mu^{4}\left[(dx^{1})^{2} + (dx^{2})^{2}\right]}{\mu^{4} + \eta^{2}\sin^{4}(\mu x^{+})} + \frac{2\mu\eta^{2}\sin^{4}(\mu x^{+})\cot(\mu x^{+})dx^{+}(x^{1}dx^{1} + x^{2}dx^{2})}{\mu^{4} + \eta^{2}\sin^{4}(\mu x^{+})} + \sum_{i=3}^{8}(dx^{i})^{2}$$

$$\left(\text{here} \quad W = \sum_{i=3}^{8}(x^{i})^{2} + \left(\frac{1}{\sin^{2}(\mu x^{+})} - \frac{\mu^{4}\cot^{2}\mu x^{+}}{\mu^{4} + \eta^{2}\sin^{4}(\mu x^{+})}\right)\left[(x^{1})^{2} + (x^{2})^{2}\right] \right)$$

$$P = \eta\mu^{2}\sin^{2}(\mu x^{+}) = \left[1, 1 + 1, 2, \dots + 1, 1 + 1, 2, \dots + 1, 1 + 1, 2, 1\right]$$

$$B_2 = \frac{\eta \,\mu^2 \sin^2(\mu x^+)}{\mu^4 + \eta^2 \sin^4(\mu x^+)} \left[\mathrm{d}x^1 \wedge \mathrm{d}x^2 + \mu \,\cot\,\mu x^+ \,\mathrm{d}x^+ \wedge (x^2 \mathrm{d}x^1 - x^1 \mathrm{d}x^2) \right]$$

& dilaton F_3 , F_5 flux

The dual metric and the beta field

Let me introduce
$$G_{mn}$$
 and β^{mn} such that $G^{mn} - \beta^{mn} = \left(\frac{1}{g+B_2}\right)^{mn}$
 $d\tilde{s}^2 = -2dx^+dx^- - \mu^2 \sum_{i=1}^8 (x^i)^2 (dx^+)^2 + \sum_{i=1}^8 (dx^i)^2$
 $\beta = \frac{\eta}{\mu^2} \left(-\sin\mu x^+\partial_1 + \mu x^1 \cos\mu x^+\partial_-\right) \wedge \left(-\sin\mu x^+\partial_2 + \mu x^2 \cos\mu x^+\partial_-\right)$
 $= \eta \hat{M}_{-1} \wedge \hat{M}_{-2}$
Killing vectors commuting each other
Beta trans. of the pp-wave

Comments

 \blacktriangleright One can also check it including the dilaton and RR-flux.

The deformed b.g. can be understood as TsT trans. pp-wave.

$$\begin{pmatrix} \hat{M}_{-1} = \frac{\partial}{\partial y^1} & \hat{M}_{-2} = \frac{\partial}{\partial y^2} \end{pmatrix}$$
12

A more complicated example (1/2)

Ex.
$$r = \frac{1}{2} \left[P_0 \wedge D + P^i \wedge (M_{0i} + M_{1i}) \right]$$
 [Fernandez-Melgarejo, Sakamoto,
Sakatani, Yoshida, 1710.06849]

Non-unimodular r-matrix A solution to the generalized supergravity

$$ds^{2} = R^{2} \left[\frac{-dt^{2} + dz^{2}}{z^{2} - \eta^{2}} + \frac{z^{2} \left[(dx^{1})^{2} + d\rho^{2} \right]}{z^{4} + \eta^{2} \rho^{2}} + \frac{\rho^{2} d\theta^{2}}{z^{2}} + ds^{2}_{S^{5}} \right]$$

$$B_{2} = -\eta R^{2} \left[\frac{dt \wedge dz}{z \left(z^{2} - \eta^{2}\right)} + \frac{\rho dx^{1} \wedge d\rho}{z^{4} + \eta^{2} \rho^{2}} \right]$$

$$I = -\frac{\eta}{R^{2}} \left(4 \partial_{t} + 2 \partial_{1} \right)$$
& & dilaton, F_{1}, F_{3}, F_{5} flux

Rescale the deformation parameter as $\eta \to \eta R^2$ and take $R \to \infty$ limit.

A more complicated example (2/2)

Results of the modified Penrose limit [S. O., J. Sakamoto, K. Yoshida, 19xx.xxxx]

Comments

- \succ The generalized pp-wave with $I^k \Rightarrow$ A solution to GSE
- \blacktriangleright cannot be understood as the beta trans. pp-wave

Summary

Concerning YB deformed backgrounds,

The standard Penrose limit \square The standard pp-wave sol.

The modified Penrose limit
The generalized pp-wave

Rescaling the deformation parameter η by the radius : $\eta \to \eta R^n$

- \blacktriangleright A gravity dual of a NCYM \Rightarrow TsT trans. of pp-wave
- \blacktriangleright A non-unimodular e.g. \Rightarrow The generalized pp-wave with I^k

Discussion -Future direction-

TsT transformed background

Undeformed pp-wave

EOM w/ periodic b.c.

EOM w/ twisted periodic b.c.

Light-cone quantization of superstrings on the generalized pp-wave HIMR case in [S. O., J. Sakamoto, K. Yoshida, 19xx.xxxx]

light-cone hamiltonian, vertex operator, 2-pt correlation fnc ...

Ι

Is it possible to analyze more general cases?

(including the case of the generalized SUGRA background)

Back up

Introduction

AdS/CFT

Type II superstring on $AdS_5 \times S^5$

4d N=4 SU(N) SYM (Large N)

The integrability has played an important role to analyze this conjecture.

A next issue : Integrable deformation of $AdS_5 \times S^5$ superstring

Yang-Baxter deformations \square Deformed $AdS_5 \times S^5$ background(as a 2d non-linear sigma model)[Sakamoto-san's talk]