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It has been known for a long time that, in general, the Bloch theorem does not apply to 

quasicrystals [1, 2, and references therein]. Accordingly, single-electron eigenfunctions on 

typical models of quasicrystals exhibit algebraic decay, as opposed to the extended Bloch 

eigenfunctions that are observed in similar models of periodic crystals. Nevertheless, it is 

interesting to explore whether extended quasiperiodic Bloch functions may somehow emerge 

in realistic physical situations—either as superpositions of eigenfunctions, or even as true 

eigenfunctions of slightly modified quasiperiodic structures. If so, what is the nature of these 

quasiperiodic Bloch functions? How are they related to the structure of the underlying 

quasicrystalline potential? Are they characterized by the same kind of quantum numbers in 

reciprocal space as their periodic analogs? If so, is there an energy-momentum dispersion curve, 

or band structure, that is associated with these Bloch functions? 

 

We study these questions using the familiar tight-binding model on the 1-dimensional 

Fibonacci quasicrystal. Indeed, we find that superpositions of relatively small numbers of 

nearly degenerate eigenfunctions give rise to extended quasiperiodic Bloch functions. These 

functions possess the structure of earlier ancestors of the underlying Fibonacci potential, and it 

is often possible to obtain different ancestors as different superpositions at the same energy. 

The quantum number that characterizes all of these ancestors is uniquely determined by the 

average energy of the superimposed eigenfunctions, giving rise to a very clear dispersion curve. 

We also find that Fibonacci-like Bloch functions emerge as eigenfunctions when a bit of static 

disorder is introduced into the otherwise perfect Fibonacci potential. These theoretical results 

may explain certain experimental observations [3,4]. 
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