Icosahedral quasicrystal, 1/1 and 2/1 approximants in Zn-Au-L (L=Yb, Tb) alloys

Tsutomu Ishimasa Toyota Physical and Chemical Research Institute Nagakute, Aichi 480-1192, Japan e-mail: ishimasa@toyotariken.jp

It is well known that isomorphic substitution is an effective way to reach new quasicrystalline alloys. In particular, in the case of Tsai-type quasicrystals, Cu, Ag and Au-based quasicrystals were found by using the Cd-Yb or Zn-Mg-Sc quasicrystal as a starting material. In this report, we introduce recent experimental results on new Zn-based alloys. The formation of 1/1 approximant is known in Zn-Yb system, but no icosahedral quasicrystal has been observed in Zn-based alloys containing Yb except for the metastable Zn-Mg-Yb quasicrystal (Mitani and Ishimasa, 2006). The purpose of this study is to find new materials that exhibit interesting properties related to magnetism and valence-fluctuations.

The results are summarized in the following Table. A new icosahedral quasicrystal is found in the quenched Zn-Au-Yb alloy, and this quasicrystal appears to be metastable. The quasicrystal survived after aging at 602°C for 108 hours, but was not formed by slow cooling from the melt. Instead, a 2/1 approximant crystal is formed as a stable phase near the same composition range. Interestingly, a new 1/1 approximant is found in Zn-Au-Tb system, which appears to be a stable phase. (Note that there is no cubic approximant in the binary Zn-Tb system.)

These experimental results show that Cd in Cd-based quasicrystals and approximant crystals may be replaced by Zn/Au. The ratio of Zn/Au can be between 0.8 and 0.9. Considering the rich variety of Cd-based alloys, this substitution method may contribute to reaching a deeper understanding of the physical properties of quasicrystal-related materials.

Nominal	Heat	Structure	Analyzed	Minor phase
composition	treatment		Composition [#]	
Zn72.5Au11.8Yb15.7	quenched	P-type icosahedral QC	Zn73Au11Yb16	ZnAuYb-type
	from 882°C	<i>a</i> _{6D} =7.384(1) Å *		(Pnma)
Zn76.0Au9.0Yb15.0	annealed at	$2/1$ approximant ($Pa\overline{3}$)	Zn76Au8Yb16	unidentified
	533°C, 67h	<i>a</i> _{2/1} =23.29(2) Å **		
Zn70.5Au15.0Tb14.5	annealed at	$1/1$ approximant ($Im\bar{3}$)	Zn69Au15Tb16	Zn58Tb13-type
	524°C, 92h	<i>a</i> _{1/1} =14.318(3) Å **		(<i>P</i> 6 ₃ / <i>mmc</i>)

Table. New Zn-based quasicrystal-related phases containing Au and lanthanoids. #: composition analyzed by EDS method. * and **: lattice parameters estimated by extrapolation method and Rietveld method, respectively.