4*f* electron-hole analogy in Tsai-type quasicrystalline approximants Au-Al-R (R = Ce and Yb)

Yuji Muro^{1,#}, Natsu Ito², Akira Sakurai², Ryuji Tamura² and Tomohiko Kuwai³

¹ Faculty of Engineering, Toyama Prefectural University, Imizu-City 939-0398, Japan

² Department of Materials Science and Technology, Tokyo University of Science, Katsushika 125-8585, Japan

³ Department of Physics, University of Toyama, Toyama 930-8555, Japan

[#]Corresponding author: ymuro@pu-toyama.ac.jp

We have studied the effect of composition on the hybridization between 4*f* and conduction electrons, called *c*-*f* hybridization, in the cubic quasicrystalline approximants Au-Al-R (R = Ce and Yb) by the measurements of magnetic susceptibility $\chi(T)$, electrical resistivity $\rho(T)$, specific heat C(T) and thermoelectric power S(T).

Figure 1 shows the results of $\chi(T)$ for Au_xAl_{86-x}Yb₁₄ (51 $\leq x \leq$ 64), where the data for x = 51 are obtained from ref. [1]. Below 300 K, a Curie-Weiss behavior is observed only in x = 52 down to 150 K. The effective magnetic moment μ_{eff} , Weiss temperature θ_P and *T*-independent term χ_0 are estimated as $\mu_{eff} = 4.9 \ \mu_B$, $\theta_P = -160 \ K$ and $\chi_0 = -1.9 \times 10^{-3} \ emu/mol-Yb$, respectively. The magnitude of χ decreases with increasing x, indicating that the Yb valence of Au-Al-Yb varies from an intermediate state to divalent one due to the enhancement of *c-f* hybridization with increasing the concentration of gold.

On the other hand, all of χ 's for Au_yAl_{84-y}Ce₁₆ ($62 \le y \le 70$) and Au₇₆Al₁₀Ce₁₄ obey the Curie-Weiss law down to 50 K, as shown by χ^{-1} vs *T* in fig. 2. The μ_{eff} increases from 2.41 to 2.49 μ_{B} with increasing y. These values of μ_{eff} are close to 2.54 μ_{B} for a free Ce³⁺ ion, indicating the stable trivalency of Ce in Au-Al-Ce. The θ_{P} 's are all negative, and the absolute values decrease from 13.5 K for y = 62 to 5.8 for Au₇₆Al₁₀Ce₁₄. This feature indicates the suppression of *c*-*f* hybridization in Au-Al-Ce by the increase of Au, that is opposite to the x dependence of Au-Al-Yb. This contrast should result from the 4*f* electron-hole analogy between the strongly correlated Ce and Yb compounds.

[1] T. Watanuki et al., Phys. Rev. B 86 (2012) 094201.

[2] K. Deguchi et al., Nature Mater. 11 (2012) 1013.

Fig.2: Magnetic susceptibility of Au-Al-Ce quasicrystalline approximants.