Memories of Prof. An-Pang Tsai in Institute for Materials Research (1985-1995) and acknowledgments to him

Tsuyoshi Masumoto
Emeritus professor, Institute for Materials Research, Tohoku University

Akio NIIKURA, Ph.D 新倉昭男
Graduated from Masumoto laboratory, Institute for Materials Research (IMR), Tohoku University.

General Manager
Design Department
Automotive Parts Business Division
UACJ Corporation
Rough history of Prof. An-Pang Tsai

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>Born in Taiwan.</td>
</tr>
<tr>
<td>1985</td>
<td>Graduated from Akita University</td>
</tr>
<tr>
<td>1985</td>
<td>Graduate School of Engineering, Tohoku University. Masumoto laboratory in Institute for Materials Research.</td>
</tr>
<tr>
<td>1990</td>
<td>Graduated from Graduate School of Engineering, Tohoku University</td>
</tr>
<tr>
<td>1990</td>
<td>Assistant Professor, Masumoto laboratory, Institute for Materials Research. Tohoku university.</td>
</tr>
<tr>
<td>1993</td>
<td>Associate Professor, Inoue laboratory, Institute for Materials Research</td>
</tr>
<tr>
<td>1996</td>
<td>Chief research officer, National Institute for Materials Science, Tsukuba, Japan</td>
</tr>
<tr>
<td>2001</td>
<td>Director, National Institute for Materials Science, Tsukuba, Japan</td>
</tr>
<tr>
<td>2004</td>
<td>Professor, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University</td>
</tr>
</tbody>
</table>

Niikura was the graduate student from 1990 to 1995 at Masumoto lab. in IMR.
The first studies of quasicrystals in Japan
by Emeritus professor Masumoto

“Icosahedral Quasicrystals of a Melt-Quenched Al-Mn Alloy Observed by High-Resolution Electron-Microscopy”

The first studies on quasicrystals in Japan were carried out in the Institute for Materials Research, Tohoku University, as a joint project of Masumoto laboratory and Hirabayashi laboratory. The first paper was due to Prof. Masumoto and Assoc. Prof. Hiraga on the structure analysis of the Al-Mn alloy using electron microscopy.

Dr. Hiraga was at first skeptical about the image, saying that the diffraction pattern looked similar to a multiply twinned sample. But analyzing the sample reproduced by Dr. Inoue, Dr. Hiraga concluded that the diffraction pattern is not from a multiply twinned sample. He started a systematic investigation on samples with different compositions, and the first paper was published in the spring of 1985.

However, the discovery of high-temperature oxide superconductivity was shaking the world (1986). And interests in the lab was largely shifted towards oxide superconductors. There was at least one student who wanted to study ‘quasicrystals’. It was An-Pang Tsai, who later did tremendous discoveries.
Masumoto laboratory
Institute for Materials Research (1987)

Professor Tsuyoshi Masumoto

Associate Professor Akihisa Inoue

Assistant Professor Kiyoshi Aoki
Kunio Matsuzaki

Graduate student etc.
D3
D2
D1 An-Pang Tsai
M2 Okumura
M1

A.P. Tsai, A. Inoue, T. Masumoto

Chem. Soc. Rev., 2013, **42**, 5352

Fig. 3 SEM images of the Al$_{65}$Cu$_{20}$Fe$_{15}$ alloy prepared by arc melting.
The Nobel Prize in Chemistry 2011 was awarded to Dan Shechtman "for the discovery of quasicrystals."

refer to their respective centering symbols in 6-dimensional superspace. However, while quasicrystals allow non-crystallographic symmetry, they are not defined by it, and quasicrystals with rotational symmetries allowed in normal 3-dimensional space have been found.

A very important factor for the successful determination of quasicrystal structure has been the discovery of stable quasicrystals. Stable quasicrystals may be grown to considerable size and exhibit the typical features of well-ordered crystalline phases. These high-quality samples were necessary for the detailed structural studies that have led to an understanding of quasicrystal structure. The first stable icosahedral quasicrystals were synthesized as early as 1987 in the ternary system Fe-Cu-Al15, and stable axial quasicrystals followed the year after16. A breakthrough came with the discovery of a binary stable icosahedral quasicrystal in 2000, using Ca-Cd and Yb-Cd17. The binary system, which has less disorder, was crucial for providing the high-quality samples subsequently used for the detailed structural elucidation of icosahedral quasicrystals.

16 L.X. He, Z. Zhang, Y.K. Wu, K.H. Kuo (1988) "Stable decagonal quasicrystals with different periodicities along the tenfold axis in Al\textsubscript{65}Cu\textsubscript{26}Co\textsubscript{9}", \textit{Inst. Phys. Conf. Ser.} \textbf{93} (2), Chapter 13, Conf. EUREM, pp 501-502.
The first grade doctoral paper was cited in the Nobel Prize award 2011

Interview of Newspaper to Prof. An-Pang Tsai 5th March 2012

— Why did you decide to start studying quasicrystals?

Research of quasicrystals began in the first year of doctoral course in 1987. When I was a graduate student in Masumoto Lab., I thought that quasicrystals was interesting. So I asked Prof. Masumoto to start new research project quasicrystals. At that time, high temperature oxide superconductor was much more popular, many researchers started to research oxide superconductor. I don't like to be in competition, conversely, I would go forward alone slowly.

— How did you actually advance your research?

At first I investigated how to produce samples by various previous papers. And while I was trying variously, I was able to find a good sample(Al-Cu-Fe) at the relatively early stage of the doctoral course.

At that time there was no culture to submit a paper to "nature", so I submitted it to the "Applied Physics Society of Japan". The paper I wrote at that time, which is probably my first paper in my lifetime, was quoted in the 2011 Nobel Prize for Chemistry Awards. My first-year doctoral course job was that I found a good sample in the world, which made it clear that it was properties of quasicrystals.
- How can you discover almost 90% quasicrystals?

I am always considering “Why can we produce quasicrystals”. "why?“ "I wonder if something will happen." "I will prove my idea by the experiment." I proceed checking various things, and I try again based on principles. Then I understand the draft reason for "Why can we produce quasicrystals?“

-There is always a question asking "Why can we make quasicrystals?“ at the root of the process, rather than the purpose of making quasicrystals itself.

While repeating that “ if this principle would be true, I also would be possible another idea. “ Of course, I think more intelligent researcher consider more and calculate more. The experimenter myself consider "Why is this?“ If this concept is correct, next step should also be possible.
Rough history of Prof. An-Pang Tsai

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1858</td>
<td>Born in Taiwan.</td>
</tr>
<tr>
<td>1985</td>
<td>Graduated from Akita University</td>
</tr>
<tr>
<td>1985</td>
<td>Graduate School of Engineering, Tohoku University. Masumoto laboratory in Institute for Materials Research.</td>
</tr>
<tr>
<td>1990</td>
<td>Graduated from Graduate School of Engineering, Tohoku University</td>
</tr>
<tr>
<td>1990</td>
<td>Assistant Professor, Masumoto laboratory, Institute for Materials Research. Tohoku university.</td>
</tr>
<tr>
<td>1993</td>
<td>Associate Professor, Inoue laboratory, Institute for Materials Research</td>
</tr>
<tr>
<td>1996</td>
<td>Chief research officer, National Institute for Materials Science, Tsukuba, Japan</td>
</tr>
<tr>
<td>2001</td>
<td>Director, National Institute for Materials Science, Tsukuba, Japan</td>
</tr>
<tr>
<td>2004</td>
<td>Professor, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University</td>
</tr>
</tbody>
</table>

I was a graduate school student from 1990 to 1995 at Masumoto lab. in IMR.
Masumoto laboratory
Institute for Materials Research (1993)

Professor Tsuyoshi Masumoto

Associate Professor Kiyoshi Aoki

Assistant Professor An-Pang Tsai
Tomoyasu Aihara

Graduate student:
D3 Kawamura, Okumura, Zhang,
D2 Yokoyama,
D1 Niikura, Mori, Paku
M2 Kawase, Memezawa, Nakazato
M1 Ishikawa, Aoyagi, Tsurui

Research student from company; 8
A stable quasicrystals

The first evidence of an IQC in this system was observed at grain boundaries in commercial Mg alloys by Tang et al. In a follow up to this work, we identified a group of stable IQCs in Zn–Mg–RE (RE: Y, Gd, Tb, Dy, Ho, Er) in 1994.

Stable Zn-Mg-Rare-Earth Face-Centered Icosahedral Alloys With Pentagonal Dodecahedral Solidification Morphology

A. Niikura, A. P. Tsai, A. Inoue, T. Masumoto
Philosophical Magazine Letters 69(6) 1994: 351-355

873K, 1h → 623K, 24h
1K/min
Highly ordered structure of icosahedral quasicrystals in Zn-Mg-RE (RE = rare earth metals) systems

<table>
<thead>
<tr>
<th>Stable phase</th>
<th>Metastable phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-type</td>
<td></td>
</tr>
<tr>
<td>Al<sub>5</sub>Li<sub>3</sub>Cu</td>
<td>Mg<sub>32</sub>(Al,Zn)<sub>49</sub>, Al<sub>6</sub>Li<sub>3</sub>Au</td>
</tr>
<tr>
<td>Mg<sub>45</sub>Pd<sub>14</sub>Al<sub>41</sub></td>
<td>Al<sub>50</sub>Mg<sub>35</sub>Ag<sub>15</sub>, Al<sub>3</sub>Mg<sub>4</sub>Cu</td>
</tr>
<tr>
<td>Ga<sub>10</sub>Mg<sub>16</sub>Zn<sub>21</sub></td>
<td></td>
</tr>
</tbody>
</table>

FK-type

<table>
<thead>
<tr>
<th>Stable phase</th>
<th>Metastable phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-type</td>
<td></td>
</tr>
<tr>
<td>Al-Mn, Al-Cr, Ar-V</td>
<td></td>
</tr>
<tr>
<td>Al<sub>72</sub>Mn<sub>20</sub>Si<sub>8</sub>, Al<sub>72</sub>Si<sub>18</sub></td>
<td></td>
</tr>
<tr>
<td>Al<sub>75</sub>Cu<sub>15</sub>V<sub>10</sub>, Pd<sub>60</sub>U<sub>20</sub>Si<sub>20</sub></td>
<td></td>
</tr>
<tr>
<td>Al<sub>40</sub>Mn<sub>25</sub>Cu<sub>10</sub>Ge<sub>25</sub></td>
<td></td>
</tr>
<tr>
<td>Ga-Pd-(Cr,Mn,Fe)</td>
<td></td>
</tr>
</tbody>
</table>

P-type

<table>
<thead>
<tr>
<th>Stable phase</th>
<th>Metastable phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI-type</td>
<td></td>
</tr>
<tr>
<td>Al<sub>65</sub>Cu<sub>20</sub>Fe<sub>15</sub></td>
<td>Al-Pd-TM</td>
</tr>
<tr>
<td>Al<sub>65</sub>Cu<sub>20</sub>Os<sub>15</sub></td>
<td></td>
</tr>
<tr>
<td>Al<sub>75</sub>Cu<sub>20</sub>Ru<sub>15</sub>, Al<sub>70</sub>Pd<sub>20</sub>Mn<sub>10</sub>, Al<sub>70</sub>Pd<sub>20</sub>Re<sub>10</sub></td>
<td>Al-Cu-TM</td>
</tr>
</tbody>
</table>

F-type

<table>
<thead>
<tr>
<th>Stable phase</th>
<th>Metastable phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>Ti<sub>36</sub>Ni<sub>18</sub>Si<sub>16</sub>, V<sub>41</sub>Ni<sub>36</sub>Si<sub>23</sub></td>
<td></td>
</tr>
<tr>
<td>Ti<sub>36</sub>Ni<sub>13</sub>Fe<sub>15</sub>Si<sub>16</sub></td>
<td></td>
</tr>
</tbody>
</table>

aR/a = 1.75

e/a = 2.2

Zn50Mg42RE8 (RE = Y, Gd, Tb, Dy, Ho, Er)

aR/a = 1.65

e/a = 1.75
The e/a criterion for several stable IQCs of various alloy systems.

\[e/a = 1.75 \]

\[e/a = 2.0 \]

\[
\begin{array}{c}
\text{Al}_{70}\text{Pd}_{20}\text{TM}_{10} \\
\text{Al}_{63}\text{Cu}_{25}\text{TM}_{12}
\end{array}
\]

\[
\begin{array}{cccc}
\text{V} & \text{Cr} & \text{Mn} & \text{Fe} \\
\text{Mo} & \text{Tc} & \text{Ru} \\
\text{W} & \text{Re} & \text{Os}
\end{array}
\]

\[
\begin{array}{cccc}
\text{Cd}_{84}\text{Yb}_{16} & \text{Cd}_{84}\text{Ca}_{16} \\
\text{In}_{42}\text{Ag}_{42}\text{Yb}_{16} & \text{In}_{42}\text{Ag}_{42}\text{Ca}_{16}
\end{array}
\]

\[
\begin{array}{cccc}
e/a & 1 & 2 & 3 \\
\text{Ag} & \text{Cd} & \text{In}
\end{array}
\]

Fig. 12 Formation of stable IQCs dominated by e/a in three families of IQCs.

\[e/a = 2.1 \]

\text{Chem. Soc. Rev., 2013, 42, 5352}
1990 Activities in Masumoto laboratory
Assistant Professor

© 2013 UACJ Corporation. All rights reserved.

© 2013 UACJ Corporation. All rights reserved.

2019/6/24 Special session in memory of Prof. An-Pang Tsai at Sakura Hall
1992 Activities in Masumoto laboratory
Assistant Professor

2019/6/24 Special session in memory of Prof. An-Pang Tsai at Sakura Hall
1993 Activities in Inoue laboratory
Associate Professor
2007 Masumoto material forum
2007 Masumoto material forum

日時：平成19年4月21・22日
場所：緑水亭（宮城県仙台市太白区秋保町湯元上原27）
プログラム：
●シンポジウム（13：30－17：45）
 13：30－13：40 開会の挨拶（青木 澤）
 司会 青木 澤
 13：40－14：25 増本 健 先生
 「金属–セラミックス系ナノ複合薄膜の開発と応用」
2012 Nobel Prize Lecture at the Japan Institute of Metals
by Prof. Dan Sechtman
Nobel Prize for Chemistry "Discoverer of Quasicrystals"

Spring 2012 The Japan Institute of Metals and Materials
May 2015 Celebration of Purple Ribbon Medal

蔡先生紫綬褒章受章祝賀会
日時 平成27年3月20日（金）
会場 學士會館 202会場
Acknowledgments

I have learned the basics as a researcher from Prof. An-Pang Tsai. I am deeply grateful for his education, training and support in my life. I would like to offer my condolences for the loss of Prof. An-Pang Tsai. In deepest sympathy.