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Diffraction symmetries and
space groups of iIQCs



ISQCS, June 23-27, 2019, Sendai, Tohoku University

X-ray transmission Laue patterns of 1QC

2-fold

1-Zn-Mg-Ho F-type




Electron diffraction pattern of 1QC
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D.Shechtman et al., Phys.Rev.Lett., 53,1951(1984).



Symmetry of 1QC

Point group mgg

Order : 120

Asymmetric region; ——
4 I 1920

—

\_—

GO +1OA +15. + m + center



2f

X-ray diffraction patterns of 1QCs

Liner plots

P-type i-Zn-Mg-Ho 2f, F-type i-Zn-Mg-Ho
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X-ray diffraction patterns of 1QCs

P-type i-Zn-Mg-Ho of F-type i-Zn-Mg-Ho

d ] | | L B o | | E——
RIS i

00°0 00°0°°%0% 00 F°°¢e%e ®e® %o |
®e030ec,0,00.0° 9, ¢ ®e o 0 o e @

00 ,05°0,0000,00,00q 00,0 o0

.‘....‘0.0 .n“...o.o. LI LR °® P
t00%0%.0.0038%%°0c% 0° o30% o° ., ,0°
0el@le0l0% 8%+ 0°qo,0050° o°0° 0 *e°
P00 2,0 ,Q40,09Q40°,00,0,00_,00 o, . . o]
t"-.‘.."‘..‘..o.‘..l LI e .O .O.C ®

0%°0% 0% 002 20% e’0t 0% 000" 00%e° o'3f .
34030%.0300°024050:30¢ (0% cleec’e” ¢ o

200 P00 0,003,040 00,0 oo A
0399051040250 93% 880 ° e V%" 0% % o n
370 , 0% 00220270, 30%0 20" 20000 0® o ‘e

03{Prq%0l¢0 0 cfeFl0 0% 0% (0°c:"c0 0 ¢ o
dasle, o.:QO:.‘i':.IS.:i' Seqe. 0,0 o, 0 )
LY I PEY P TN PV P FIEPLY TN P I X2 o o
Y2 AH A I ‘
[ 3

All even or all odd for

No reflection condition

Log plots hihahshahshe



Vectors used for indexing

Any vectors can be used if all the
reflections can be indexed correctly.

Six vectors — 6D reciprocal lattice

The 6D reciprocal lattice must
have at least icosahedral
symmetry.

6D hypercubic lattice is chosen
usually.



6D Icosahedral lattices

Lattice types Reflection condition
* Primitive No condition
e.g. Pm35
- Body-centered S0 hi=2n for hyhohshshshe
eg. Im35
* Face-centered All even or all odd for hihohghahshg

€.g. F’mgg



Centering translations in centered lattices

Face-centered Body-centered
(F-type) (I-type)
(000000),
(330000), (5035000), .. -, (00003 ), (000000), (35333 3)
(333232)-(003333)- -+ (333300)
32 centering translations 2 centering translations

« Body-centered lattice has yet to be observed experimentally!

Recently, an I-type structure has formed as a computer simulated structure:
M. Engel et al., Nat. mat. 14, 109 (2015).



The section method



Fibonacci structure

Recurrence formula
Fn+1 — Fn + Fn—l

1D quasi-periodic structure Fo=L
Fl = S
Direct space L oSyl S, L,L S L,L.S, (L =185)
7= (1++5)/2
d Fourier transformation
Diffraction pattern
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Diffraction pattern of the Fibonacci structure

1D complementary space

Internal space 2D reciprocal space
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Construction of the Fibonacci structure

ANENAY \\ \
\ \ External space I
(1D direct space)

7

Internal space I' |
(1D complementary space)

d, = (diadll) \ \
d; = (d;,dé) \

\ \ 2D direct space
N

PR

The angle 6 is determined by the formula: tanf = 1/7.

Occupation domain

ﬁv

d; = dfa; +djas
d2 = d2€a1 + d21a2




Relationship between the direct space and the
reciprocal space of Fibonacci structure

Reciprocal space

Fourier
transformation
[ZD crystal Iattice} — [ZD reciprocal Iattice}
Periodic Periodic
Structure Diffraction pattern
Fourier

the 2D crystal along the other 1D

_Quasi-periodic Quasi-periodic
Fibonacci structure

1D section of transformation : -
[ } — [PrOjeCtIOI’] onto 1D}




Construction of the Fibonacci structure

Internal space

\

(1D complementary space)

N\

d; = (dia dll)

d2 — (d;, de)

\

External space r,
(1D direct space)

Occupation domain

ﬁv

\

\

d; = dfa; +djas
d2 = d2€a1 + d21a2

2D direct space

N

R

The angle 6 is determined by the formula: tanf = 1/7.



Approximant crystals of Fibonacci structure

A shear strain (liner phason strain) along r, is applied.
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Determination of
the 1icosahedral lattice



Determination of the unit vectors of 1QCs

lcosahedral symmetry
(1=1,...,6)
6 indices: hihahshahshe
Lattice constant: @™

[ Diffraction pattern }

4

[ reciprocal lattice }

\

[Icosahedral lattice in 6D reciprocal space} d: — df.f;‘e + d;q ('5 =1,... :6)
2
* (external) (internal)

N/

[ Icosahedral lattice in 6D direct space } d;=dS+d} (i=1,...,6)

. 1
Lattice constant: 4 = 2a*




Unit vectors 1n 6D reciprocal space

d} (¢ =1,2,...,6) : unit reciprocal lattice vectors

ai, ag, ag, a4, as, ag : orthonormal base vectors

ai,az,az : span the external space (3D)
a4, as,a6 . span the internal space (3D)

~

d’{ 1 T 0 T —1 0 ajl

/ az \ / r 0 1 -1 0 7 \ ( a \
d; . a* T 0O -1 -1 0 -1 as
d; | V2+7 o 1 —7 0 7 1 ay
dg —1 T 0 —7m -1 0 as

\ d; ) \ 0 1 7 0 7 -1/ \ ag )

a” : lattice constant in reciprocal space




Projection of the unit vectors d;

(reciprocal space)
External space (3D) r,,* Internal space (3D) I J_*

Z Z

*1

6
a3 .
" d;
2
o -
1
. *1
*e 1 6
3 *e T 3



Unit vectors 1n 6D direct space

Reciprocal lattice vectors Direct lattice vectors
d: (i=12,...,6) > d; (i=1,2,...,6)
d}d;j =06, (1<4,j<6)]
6 6
d:c = ZMiglaj d’a, = ZMijaj
J=1 j=1
/ d1 / 1 T 0 T —1 0 / aj
d2 \ T 0 1 -1 0 T \ a9 \
d3 . a T 0 -1 -1 0 -7 as
dy - V2+T 0 1l —7 0 T 1 ay
d5 —1 T 0 —7 -1 0 as
&\ d5 ) \ 0 1 T 0 T —1 / \ ag ) /
a = 1. icosahedral lattice constant

2a*



Projection of the unit vectors d;
(direct space)

External space (3D) [, S
z <
e
dg
ag
e
d$ |
a
a ..
a e
1 dl
e
m 3




Description of icosahedral
quasicrytal structures



Penrose tiling
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Mathematical physicist
Mathematician
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A Penrose tiling is an example of quasiperiodic 2D tiling that consists of two types
of prototiles.



Decoration of the Penrose tiling with atoms
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Similar to h1hohshs0

Diffraction pattern of the Penrose tiling
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Vertex decoration with point scatters



3D Ammann-Kramer-Neri tiling

* A 3D analog of Penrose tiling.

 The AKN tiling consists of two primitive rhombohedra:
the acute rhombohedron (AR) and the obtuse rhombohedron (OR).

« Space-filling structure with icosahedral symmetry.

~a

AR OR



Vertex decoration of the rhombohedra

AR OR

Put atoms at every vertex of the AKN tiling.



A naive model of 1QC (vertex decoration model of
AKN tiling)
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Projected view of the structure along a 5f axis.



Construction of AKN tiling by the section method

(Generate the vertices of the AKN tiling)

Occupation Domain Corner vectors Position

el =(1,1,1,1,1,1)/2  (0,0,0,0,0,0)
e% _ (1; 0, I, I: 0, 1)1/2 Site-symmetry group:
Basis: d} (i=1,...,6) ma3d

This rhombic triacontahedral OD corresponds
to the projection of the 6D unit cell onto the 3D

internal space.

Asymmetric part



2D section of the 6D structure including 5f axes

511‘\\\\ \ \QSfe

a
d2 +d3s+ds+ds+ds

The line segment is the 1D
section of the OD along a 5f
axis in the internal space.

o/
g4

Note that any direction in the plane has 5-fold rotational symmetry.



2D section of the 6D structure including 3f axes

| //Bf/ /

The line segment is the 1D
section of the OD along a 3f
axis in the internal space.




2D section of the 6D structure including 2f axes

The line segment is the 1D
section of the OD along a 2f
axis in the internal space.




Simple decoration model of
1cosahedral QC based on the AKN
tiling



Atomic decoration of two rhombohedra in the case
of simple decoration model

AR OR

@ Vertices
® Mid edges
© Body diagonal two positions in ARs

This model was proposed as the structure model of i-Al-Cu-Li iQC (Bergman type
cluster) at the early stage.



Simple decoration model of 1QC 1n 6D
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Three large occupation domains characterize the 6D structure.



Site-symmetry group

RT m35 _ |
Independent occupation domains and
their shapes in the internal space.

v: (0,0,0,0,0,0) e

/

B

>

d; +d3+ds +ds +ds

<N gy/f
m

E: (1,0,0,0,0,0)

The symmetry of the occupation domain is equal to or higher than the site symmetry.



How to obtain the OD at E

5f !
NN

N\
Rhombic icosahedron \




How to obtain the OD at B
(step no.1)
Acute rhombohedral-shaped OD

Center: (%? %,0?0} %

Length of the diagonal: |d{ +d5 +d:| = (1 + 7)a



(step no.2)

20AR ' N

Center: (%, %, 0,0, %, 0)+ shift along !
E-space

-
~—
-~
~—
-~
~—
-~
~ -~
~




The result is equivalent to put an OD with FD shape on (1,1,1,1,1,1)/2
instead of putting ODs with AR shape at the original positions in the 6D unit cell.



Site-symmetry group

AN
RT ")

m35

Simple decoration model

v: (0,0,0,0,0,0)

5f€

/ >
\Y; ds +d3 +dg +ds 4+ de




What 1s important to remember

IQCs can be described as 6D

Occupation domain (OD) can

atom in the 6D periodic crystal.

periodic crystals.

pe considered as

Each OD has a specific size and shape.

The symmetry of OD is equal to or higher than

the site-symmetry.



Structure factor formula

for QCs



[Structure factor formula]

F(h)=> " ) f*(b°)p"exp{—B*(h°)?/4}

Ho{R[t}H

LRIt}

f*(n%)
: S.0.f

B* -

x exp{2mih-(Rr* + t)}F}' (R 'h)

: Independent occupation domain

Symmetry operators of space group which generate
the equivalent occupation domains in a unit cell from the
iIndependent occupation domain u

Atomic scattering factor

ADP



Provided that the occupation domain consists of v
independent triangles (or tetrahedra), it is given by

) > Fhi(R'h)

=1 R’

R’ : Rotational part of the site-symmetry operator



Real structure of
icosahedral quasicrystals



Phase problem in QCs

Unavoidable loss of phase information in
the diffraction intensity.

/

\

F(k) = /p('r') exp(2mik - r) dr

1

p(r) = v /F(k) exp(—2mik - r) dk

~

/

F(k) = |Flexp(ip) I |FJ?

The phase ¢ cannot be obtained by ordinary diffraction experiment.



Principle of the density modification method

Diffraction experiment

. =

nD indexed reflections | Fb|
qf)g random  me—p- |FD| e}{p(it;bg) ‘FT‘l
_ |Fo| exp(i¢”) ==> p(r)
0 <6 2 I FT1 l ¢ Density
’ modification
|Ff| e}{p(i!;bf) <:?| p! ('T') Low density elimination,

Stop Charge flipping

Structure solution ? FT: Fourier transform




Structure solution of P-type 1-Zn-Mg-Ho QC

space group Pm35

V: (0,0,0,0,0,0)

B:(1,1,1,1,1,1)/2

E: (1,0,0,0,0,0)/2
a=0.5137 nm

[100000] —

[00110-1] ———
[-110000] ——

[000110] ——

[110010] ——— 0 Normarized density 1




Structure solution of 1-Yb-Cd QC

space group Pm35

V: (0,0,0,0,0,0)

B:(1,1,1,1,1,1)/2

E: (1,0,0,0,0,0)/2
a=0.5689 nm

[100000] —

[00110-1] ———

[000110] ——
= .

[110010] ——— 0 Normarized density !




Occupation domains for i-Yb-Cd QC

V:(000000) B:(111111)/2 E:(100000)/2

] cd (in RTHs)

] cd (part. oce.)
4 [ Cd (not in RTHs)
Yb (in RTHs)
Yb (in ARs)
: OD for the |2-fold vertices of 3D AKN tiling I Vacancies



Constitution of the ODs for i-YbCd QC

V:(000000)

@ Cd (in RTHs)

[] cd (part. occ.)

- [C] Cd (not in RTHs)

AN g
in

\" I Vacancies

Cluster center




H.Takakura, C.P.Gomez, A.Yamamoto, M.deBoissue, A.P.Tsai, Nat. Mater. 2007, 6, 58.



Summary

The 6D structure of IQCs can be known by the 6D
electron densities obtained through a phase retrieval of
diffraction data.

Respective IQCs have different 6D crystal structures.

Result of phase retrieval is a starting point of structure
analysis of IQCs.

The purpose of the structure analysis of QCs is to
determine the 3D atomic structure, which means that to
determine the detailed shape of occupation, to specify its
location and to reveal the distribution of constituent
elements in it.



