Aperiodic Crystals: How is that even possible?

Ron Lifshitz
School of Physics & Astronomy
Tel Aviv University

http://www.tau.ac.il/~ronlif/pub.html

- o What is the order parameter?
- o What is the broken symmetry?
 - · What is the nature of the order-parameter
- o What are the elementary excitations?
- o What are the topological defects?

(Landau) Theory of Symmetry Breaking:

- o What is the order parameter?
- ø What is the broken symmetry?
 - o What is the nature of the order-parameter
- · What are the elementary excitations?
- ø What are the topological defects?

But first, what is a crystal?

What is a crystal?

o Before Shechtman (1982):

An ordered solid, and therefore periodic.

- o Diffraction (Fourier transform) contains Bragg peaks, whose positions are closed under vector addition, forming a discrete periodic lattice (only 14 Bravais classes in 3d).
- Restricted rotation symmetries (n=2,3,4,6).

What is a crystal?

Before Shechtman (1982):

An ordered solid, and therefore periodic.

- o Diffraction (Fourier transform) contains Bragg peaks, whose positions are closed under vector addition, forming a discrete periodic lattice (only 14 Bravais classes in 3d).
- Restricted rotation symmetries (n=2,3,4,6).

6 After Shechtman (1982):

An ordered solid, not necessarily periodic.

- o Diffraction (Fourier transform) contains Bragg peaks, whose positions are closed under vector addition, but arbitrary.
- Unrestricted rotation symmetry.

Mhat is a Crystal?

A crystal is a solid with Long-range order; one whose diffraction diagram contains Bragg peaks.

$$\rho(\mathbf{r}) = \sum_{\mathbf{k} \in \mathbf{L}} \rho(\mathbf{k}) \mathbf{e}^{i\mathbf{k} \cdot \mathbf{r}}$$

r = rank, d = dimension	
r=d	Periodic
d≤r<∞	Quasiperiodic
d≤r≤∞	Almost periodic

Source unknown.

R. Lifshitz, "What is a crystal?", Z. Kristallogr. 222 (2007) 313.
Ron Lifshitz, School of Physics & Astronomy, Tel Aviv University

What is the order parameter?

- o Order Parameter:
 - $\rho(\mathbf{r})$ = density average density
 - a Above To zero everywhere
 - $oldsymbol{o}$ Below T_c nonzero with Bragg Peaks in $ho(\mathbf{k})$
- o Free Energy: A functional of $ho(\mathbf{r})$ that preserves the symmetries of the liquid state
 - ρ F is zero if $\rho(\mathbf{r}) = 0$ everywhere
 - $m{o}$ In liquid state $m{F}$ is positive for nonzero $ho(\mathbf{r})$
 - $m{o}$ In crystal state ${f F}$ is negative for nonzero $ho({f r})$

- ø What is the order parameter? V
- e What is the broken symmetry?
 - · What is the nature of the order-parameter space?
- ø What are the elementary excitations?
- ø What are the topological defects?

What is the broken symmetry?

o Consider a spontaneous breaking of the symmetry to a quasiperiodic crystal,

$$\rho(\mathbf{r}) = \sum_{\mathbf{k} \in \mathbf{L}} \rho(\mathbf{k}) \mathbf{e}^{i\mathbf{k} \cdot \mathbf{r}}$$

Periodic crystal if r = d, quasicrystal if r > d.

o In Fourier space the free energy expansion is

$$\mathcal{F} = \sum_{n} \sum_{\mathbf{k}_1 \dots \mathbf{k}_n \in L} A(\mathbf{k}_1 \dots \mathbf{k}_n) \rho(\mathbf{k}_1) \dots \rho(\mathbf{k}_n)$$

where the coefficients $A\left(\mathbf{k}_1\ldots\mathbf{k}_n
ight)$ must vanish unless $\mathbf{k}_1 + \ldots + \mathbf{k}_n = 0$ (Exercise: why is that?).

What is the relation between different minima of F?

What is the broken symmetry?

What is the relation between different minima of F?

$$\mathcal{F} = \sum_{n} \sum_{\mathbf{k}_{1} \dots \mathbf{k}_{n} \in L} A(\mathbf{k}_{1} \dots \mathbf{k}_{n}) \rho(\mathbf{k}_{1}) \dots \rho(\mathbf{k}_{n})$$

 $oldsymbol{o}$ Two densities $ho(\mathbf{r})$ and $ho'(\mathbf{r})$ are both minimum free-energy states only if their Fourier amplitudes satisfy Structure Invariants

$$\forall \mathbf{k}_1 \dots \mathbf{k}_n \in L : \rho'(\mathbf{k}_1) \dots \rho'(\mathbf{k}_n) = \rho(\mathbf{k}_1) \dots \rho(\mathbf{k}_n)$$
 for any n, whenever $\mathbf{k}_1 + \dots + \mathbf{k}_n = 0$.

o In real space: Identity of the nth order autocorrelation functions

$$C^{(n)}(\mathbf{r}_1,\dots,\mathbf{r}_n) = \lim_{V\to\infty} \frac{1}{V} \int_V d\mathbf{r} \rho(\mathbf{r}_1-\mathbf{r}) \cdots \rho(\mathbf{r}_n-\mathbf{r})$$

What is the broken symmetry? What is the relation between different minima of F?

Two different minimum free-energy states, sharing the same n-point autocorrelation functions for arbitrary n, are indistinguishable.

- @ 2-point correlation (Patterson Function): The two densities have identical diffraction diagrams. Their Fourier amplitudes differ at most by a phase: $\forall \mathbf{k} \in L: \quad \rho'\left(\mathbf{k}\right) = e^{2\pi i \chi\left(\mathbf{k}\right)} \rho\left(\mathbf{k}\right)$.
- σ 3-point correlation: $\chi(k)$, called a gauge tunction, is a linear function of the wave vectors in L

$$\forall \mathbf{k}_1, \mathbf{k}_2 \in L : \chi(\mathbf{k}_1 + \mathbf{k}_2) = \chi(\mathbf{k}_1) + \chi(\mathbf{k}_2)$$

N.D. Mermin, Rev. Mod. Phys. 64 (1992) 3-49.

Ron Lifshitz, School of Physics & Astronomy, Tel Aviv University

What is the broken symmetry?

What is the relation between different minima of F?

All the different minima of F are related by gauge functions - the set of all gauge functions can be used to label all the minima and characterize the order parameter space!!

o Because gauge functions are linear, once we choose a basis $b^{(i)}$ (with i=1...r) for L, each gauge function is uniquely expressed by r real numbers

$$\chi_i = \chi\left(\mathbf{b}^{(i)}
ight)$$
 with $i=1...$ r.

The set of all gauge functions is an r-dimensional vector space V* over the real numbers.

Rigid translations and phasons What is the relation between different minima of F?

- o The effect of any gauge function can be decomposed into a pure d-dimensional rigid translation, given by the d components of a translation vector u and a remaining contribution $\varphi(k)$, called a phason.
- o This is achieved by a change of basis in V* $\chi(\mathbf{k}) = \sum n_i \chi_i = \frac{\mathbf{u} \cdot \mathbf{k}}{2\pi} + \varphi(\mathbf{k})$, where $\mathbf{k} = \sum n_i \mathbf{b}^{(i)}$.
 - $oldsymbol{o}$ For periodic crystals $\varphi(\mathbf{k})=0$, and $\mathbf{u}=\sum\chi_j\mathbf{a}^{(j)}$, where $\mathbf{a}^{(j)} \cdot \mathbf{b}^{(i)} = 2\pi \delta_{ij}$.
 - σ For quasicrystals $\varphi(k)$ has r-d degrees of freedom.

What remains of the broken symmetry?

What are the gauge functions that leave the brokensymmetry state invariant rather than taking it into other minimum free-energy states?

$$\forall \mathbf{k} \in L : \quad \rho'(\mathbf{k}) = e^{2\pi i \chi(\mathbf{k})} \rho(\mathbf{k})$$

L* = the set of integer-valued gauge functions!!

Rigid Translation of the Penrose tiling

What remains of the broken symmetry?

What are the gauge functions that leave the brokensymmetry state invariant rather than taking it into other minimum free-energy states?

$$\forall \mathbf{k} \in L : \quad \rho'(\mathbf{k}) = e^{2\pi i \chi(\mathbf{k})} \rho(\mathbf{k})$$

L* = the set of integer-valued gauge functions

What are the gauge functions that take a given minimum free-energy state into all other minima?

V*/L* = the gauge functions in V* modulo L* Every degenerate ordered state is parameterized by a set of r numbers $0 \le \chi_i < 1, i = 1...r$.

The order-parameter space is an r-dim. torus!!

- o What is the order parameter? V
- o What is the broken symmetry? V
 - e What is the nature of the order-parameter
- o What are the elementary excitations?
- ø What are the topological defects?

Goldstone modes - phonons & phasons Long wavelength deformations of an ordered state that cost very little energy.

- o Any gauge function $\chi(\mathbf{k})$ transforms one ordered state into another at no energy cost.
- o Slightly change the gauge function as you move along the crystal at a small energy cost,

$$(\chi_1, \dots, \chi_r)$$
 $\chi_i(\mathbf{r}) \sim e^{i\mathbf{q}\cdot\mathbf{r}}$

This is an r-component deformation field!

o Often described in the phonon-phason basis.

$$\chi(\mathbf{r}; \mathbf{k}) = \sum n_i \chi_i(\mathbf{r}) = \frac{1}{2\pi} \mathbf{u}(\mathbf{r}) \cdot \mathbf{k} + \frac{1}{2\pi} \mathbf{w}(\mathbf{r}) \cdot \tilde{\mathbf{k}}$$

- o What is the order parameter? V
- o What is the broken symmetry? V
 - e What is the nature of the order-parameter
- o What are the elementary excitations? V
- e What are the topological defects?

Dislocations

Away from the core of the dislocation the crystal is in one of its ordered states (only-slightly strained).

- o Again, use the r-component field $\chi_i(\mathbf{r})$, but now go in a loop around the core position, until you return to the starting point.
- In polar coordinates (in 2d): $\chi_i(r,\theta) \longrightarrow \chi_i(\theta)$.

Winding numbers

$$\chi_i(0) = \chi_i(2\pi) \qquad \chi_i(\theta) = n_i \theta$$

Burgers "vector": (n_1,\ldots,n_r)

Secund Dislocations

Back to real space, where now the dislocations are obvious

Filtering of Bragg peaks

Fourier space

- ø What is the order parameter? V
- e What is the broken symmetry? V
 - e What is the nature of the order-parameter
- o What are the elementary excitations? V
- ø What are the topological defects? V

The gauge function:
$$\rho'(\mathbf{k}) = e^{2\pi i \chi(\mathbf{k})} \rho(\mathbf{k})$$

Further reading

o Main reference for this Lecture:

· R. Lifshitz, "Symmetry breaking in the age of quasicrystals", Isr. J. Chem. 51 (2011) 1156.

e Basic terminology and definitions:

- R. Lifshitz, "What is a crystal?", Z. Kristallogr. 222 (2007) 313.
- R. Lifshitz, "Quasicrystals: A matter of definition", Found. Phys. 33 (2003) 1703.

o Symmetry of crystals:

- · N.D. Mermin, "The space groups of icosahedral quasicrystals and cubic, orthorhombic, monoclinic, and triclinic crystals", Rev. Mod. Phys. 64 (1992) 3.
- R. Lifshitz, "The Symmetry of Quasiperiodic Crystals", Physica A 232 (1996)633.
- · R. Lifshitz, "Theory of color symmetry for periodic and quasiperiodic crystals", Rev. Mod. Phys. 69 (1997) 1181.

Further reading

o Symmetry of crystals (cont.):

R. Lifshitz, "Magnetic point groups and space groups", Encyclopedia of Condensed Matter Physics, Vol. 3, Ed. F. Bassani, G.L. Liedl, and P. Wyder, (Elsevier Science, Oxford, 2005) 219.

o Phonons & Phasons:

o B. Freedman, R. Lifshitz, J.W. Fleischer, and M. Segev, "Phason dynamics in nonlinear photonic quasicrystals", Nature Materials 6 (2007) 776.

o Distocations:

- G. Barak and R. Lifshitz, "Dislocation dynamics in a dodecagonal quasiperiodic structure", Phil. Mag. 86 (2006) 1059.
- · L. Korkidi, K. Barkan, and R. Lifshitz, "Analysis of dislocations in quasicrystals composed of self-assembled nanoparticles", In Aperiodic Crystals, (Springer, Dordrecht, 2013) ch. 16.

Most articles are available at: http://www.tau.ac.il/~ronlif/pub.html

