Spinor-helicity variables for cosmological horizons in de Sitter space

Adrian David^{1,†}, Nico Fischer², and Yasha Neiman^{1,‡} (¹Okinawa Institute of Science and Technology, Okinawa, Japan, ²Friedrich Schiller University Jena, Jena, Germany)

Corresponding authors: † adrian.david@oist.jp, ‡ yashula@icloud.com

Abstract: We consider massless fields of arbitrary spin in de Sitter space. We introduce a spinor-helicity formalism, which encodes the field data on a cosmological horizon. These variables reduce the free S-matrix in an observer's causal patch, i.e., the evolution of free fields from one horizon to another, to a simple Fourier transform. We show how this result arises via twistor theory, by decomposing the horizon \leftrightarrow horizon problem into a pair of (more symmetric) horizon \leftrightarrow twistor problems.

References

[1] Adrian David, Nico Fischer, Yasha Neiman, Spinor-helicity variables for cosmological horizons in de Sitter space, <u>Phys. Rev. D 100</u>, 045005.