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Big Data Analysis is helping Earth scientists 
extract more knowledge & insights 

from larger, more complex data sets than ever before.
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adapted from Arrowsmith et al. (2022) 
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1) Massive datasets
2) Advances in computing
3) New techniques and algorithms

Drivers of Big Data Geoscience
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Massive geoscience data sets
(Image: SCEC, SDSC)

Large-scale simulations

Long-duration continuous observations

Crowdsourced data
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Dense sensor arrays

[Nakata et al. 2015]

Remote sensing 
observations

[Smith-Konter et al. 2018]
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Arrowsmith et al. (2022) 
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The challenges of big geoscientific data analysis
Volume:   Data-gathering capabilities – GB to TBs per day

• Extracting information – automated analysis,  scalability

Velocity: Near real-time analysis, e.g. for hazard assessment
• Streaming data – fully automated (no configuration)

Variety:    Multimodal datasets, e.g. seismometers + GNSS
• Sensor fusion – combining multiple data sources

Veracity:  Data quality,  e.g. noisy environments, instrument error
• automatic data cleaning, quality control, denoising
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Algorithms for big scientific data

• Efficient algorithms: linear / sub-quadratic scaling with data volume
• randomized algorithms,  streaming algorithms,  etc. 

• Data-driven algorithms:  large-scale machine learning (e.g. deep learning)
• Custom, task-specific algorithms
• Data reduction, data compression
• More computation: parallel and distributed computing,  cloud computing 

K.J. Bergen  |  Frontier of Understanding Earth's Interior & Dynamics



Can new Big Data algorithms detect small earthquakes 
and identify seismic phases?



FAST:  How can we detect more small earthquakes?
Yoon et al., (2015)

C. YoonO. O’ReillyG. Beroza K. RongP.  Bailis P.  Levis

Discovers new event waveforms (without labeled data):
10 –100× earthquakes detected

Computationally efficient:
500× more data with reduced runtime 

Leverages technology for efficient audio recognition



FAST: scalable “Large-T” earthquake detection

2013-Oct

2010-Sep

2009-Mar

2008-Apr

2007-Nov

Data mining: extract similar waveforms from large datasets

Naïve (slow, exact) search:  small data

Efficient (fast, approximate) search:

Searching a well-organized database is faster – cluster similar waveforms for quick retrieval

vs.

Sacrificing (a little) accuracy can substantially reduce runtime. 
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Algorithms for big scientific data

• Efficient algorithms: linear / sub-quadratic scaling with data volume
• randomized algorithms,  streaming algorithms,  etc. 

• Data-driven algorithms:  large-scale machine learning (e.g. deep learning)
• Custom, task-specific algorithms
• Data reduction, data compression
• More computation: parallel and distributed computing,  cloud computing 
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What is Machine Learning? 

Machine learning (ML)
a set of tools for recognizing complex 
patterns and building predictive models 
automatically from data

x

y data
linear model

Automating and scaling data analysis

Supervised 
Learning a pattern 

from examples
Unsupervised 

Discovering 
structure in data
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Machine Learning is a key
tool for high-volume data

• diverse datasets & tasks
• dense & sparse data
• high- or low-knowledge

Arrowsmith et al. (2022) 

K.J. Bergen  |  Frontier of Understanding Earth's Interior & Dynamics



How is machine learning being used by geoscientists today?
How might it be used in the near future?

Automation

M
odelingDi

sc
ov

er
y

K.J. Bergen  |  Frontier of Understanding Earth's Interior & Dynamics



Automation

M
odelingDi

sc
ov

er
y

Extract new information, 
patterns,  structure,  or 
relationships from data
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How is machine learning being used by geoscientists today?
How might it be used in the near future?
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• Learn representations
• Build surrogate models
• ML + simulations
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How is machine learning being used by geoscientists today?
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• Perform a complex or 
repetitive task 

• High accuracy predictions
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Benchmark & training datasets for supervised ML

[Mousavi et al. (2019), IEEE Access.]

STEAD dataset

[Michelini et al. (2021), DOI: 10.13127/instance]
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[Ross et al., 2018]

[e.g. Perol et al. (2018)]
1D CNN for detection and phase-picking  
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[Zhu & Beroza (2018), Geophys J. Int.]

PhaseNet:  U-net for phase picking 

EQTransformer:  Attention-based model for detection & phase picking 
[Mousavi et al. (2020), Nature Communications]
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Flexibility of Neural Networks

Neural Network Model Zoo (F. van Veen & S. Leijnen) 



Can we build an interpretable deep NN for detection?

Conv (+ BN + ReLU) + MaxPool Flatten Dense
Dense + SoftmaxPrototype layer (pairwise distances)

Chen et al. (2019)
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Domain- or task- specific 
NN architectures

• Design human-
interpretable prediction 
systems
• Jointly analyze data from 

multiple sources
• Incorporate physics into 

data-driven NN model



Advances in our 
understanding of 
the solid Earth

Open source

Open access

Open 
Science

Data Science 
Competitions

Challenge 
Problems

Benchmark 
Data sets

Joint work 
with ML 
experts

Conferences 
& Workshops Geo-Data 

Science 
Education

Physics-
Guided 
Learning

Interpretable 
Learning New ML 

architectures 
& models

Future of Machine Learning for the solid Earth
[Bergen et al., Science 2019]
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Further reading REVIEW
◥

GEOPHYSICS

Machine learning for data-driven
discovery in solid Earth geoscience
Karianne J. Bergen1,2, Paul A. Johnson3, Maarten V. de Hoop4, Gregory C. Beroza5*

Understanding the behavior of Earth through the diverse fields of the solid Earth geosciences
is an increasingly important task. It is made challenging by the complex, interacting, and
multiscale processes needed to understand Earth’s behavior and by the inaccessibility of nearly
all of Earth’s subsurface to direct observation. Substantial increases in data availability and
in the increasingly realistic character of computer simulations hold promise for accelerating
progress, but developing a deeper understanding based on these capabilities is itself
challenging.Machine learningwill play a key role in this effort.We review the state of the field
and make recommendations for how progress might be broadened and accelerated.

T
he solid Earth, oceans, and atmosphere
together form a complex interacting geo-
system. Processes relevant to understand-
ing its behavior range in spatial scale from
the atomic to the planetary, and in tempo-

ral scale from milliseconds to billions of years.
Physical, chemical, and biological processes in-
teract and have substantial influence on this
complex geosystem. Humans interact with it
too, in ways that are increasingly consequen-
tial to the future of both the natural world and
civilization as the finiteness of Earth becomes
increasingly apparent and limits on available
energy, mineral resources, and fresh water in-
creasingly affect the human condition. Earth is
subject to a variety of geohazards that are poorly
understood, yet increasingly impactful as our ex-
posure grows through increasing urbanization,
particularly in hazard-prone areas. We have a
fundamental need to develop the best possible
predictive understanding of how the geosystem
works, and that understanding must be informed
by both the present and the deep past.
In this review we focus on the solid Earth.

Understanding the material properties, chemis-
try, mineral physics, and dynamics of the solid
Earth is a fascinating subject, and essential to
meeting the challenges of energy, water, and
resilience to natural hazards that humanity faces
in the 21st century. Efforts to understand the
solid Earth are challenged by the fact that nearly
all of Earth’s interior is, and will remain, in-
accessible to direct observation. Knowledge of
interior properties and processes are based on
measurements taken at or near the surface, are
discrete, and are limited by natural obstructions

such that aspects of that knowledge are not
constrained by direct measurement.
For this reason, solid Earth geoscience (sEg)

is both a data-driven and a model-driven field
with inverse problems often connecting the two.
Unanticipated discoveries increasingly will come
from the analysis of large datasets, new develop-
ments in inverse theory, and procedures enabled
by computationally intensive simulations. Over
the past decade, the amount of data available to
geoscientists has grown enormously, through
larger deployments of traditional sensors and
through new data sources and sensing modes.
Computer simulations of Earth processes are
rapidly increasing in scale and sophistication
such that they are increasingly realistic and rele-
vant to predicting Earth’s behavior. Among the
foremost challenges facing geoscientists is how
to extract as much useful information as possible
and how to gain new insights fromboth data and
simulations and the interplay between the two.
We argue that machine learning (ML) will play a
key role in that effort.
ML-driven breakthroughs have come initially

in traditional fields such as computer vision and
natural language processing, but scientists in
other domains have rapidly adopted and ex-
tended these techniques to enable discoverymore
broadly (1–4). The recent interest in ML among
geoscientists initially focused on automated anal-
ysis of large datasets, but has expanded into the
use of ML to reach a deeper understanding of
coupled processes through data-driven discov-
eries and model-driven insights. In this review
we introduce the challenges faced by the geo-
sciences, present emerging trends in geoscience
research, and provide recommendations to help
accelerate progress.
ML offers a set of tools to extract knowledge

and draw inferences from data (5). It can also be
thought of as the means to artificial intelligence
(AI) (6), which involves machines that can per-
form tasks characteristic of human intelligence
(7, 8). ML algorithms are designed to learn from

experience and recognize complex patterns and
relationships in data. ML methods take a differ-
ent approach to analyzing data than classical
analysis techniques (Fig. 1)—an approach that
is robust, fast, and allows exploration of a large
function space (Fig. 2).
The two primary classes of ML algorithms are

supervised and unsupervised techniques. In sup-
ervised learning, the ML algorithm “learns” to
recognize a pattern or make general predictions
using known examples. Supervised learning algo-
rithms create a map, or model, f that relates a
data (or feature) vector x to a corresponding
label or target vector y: y = f(x), using labeled
training data [data for which both the input and
corresponding label (x(i), y(i)) are known and
available to the algorithm] to optimize the mod-
el. For example, a supervised ML classifier might
learn to detect cancer in medical images using
a set of physician-annotated examples (9). Awell-
trained model should be able to generalize and
make accurate predictions for previously un-
seen inputs (e.g., label medical images from new
patients).
Unsupervised learningmethods learn patterns

or structure in datasets without relying on label
characteristics. In a well-known example, re-
searchers at Google’s X lab developed a feature-
detection algorithm that learned to recognize
cats after being exposed to millions of images
from YouTube without prompting or prior in-
formation about cats (10). Unsupervised learning
is often used for exploratory data analysis or vi-
sualization in datasets for which no or few labels
are available, and includes dimensionality reduc-
tion and clustering.
The many different algorithms for supervised

and unsupervised learning each have relative
strengths and weaknesses. The algorithm choice
depends on a number of factors including (i)
availability of labeled data, (ii) dimensionality
of the data vector, (iii) size of dataset, (iv)
continuous- versus discrete-valued prediction
target, and (v) desired model interpretability.
The level of model interpretability may be of
particular concern in geoscientific applications.
Although interpretability may not be necessary
in a highly accurate image recognition system,
it is critical when the goal is to gain physical
insight into the system.

Machine learning in solid Earth
geosciences

Scientists have been applying ML techniques to
problems in the sEg for decades (11–13). Despite
the promise shown by early proof-of-concept
studies, the community has been slow to adopt
ML more broadly. This is changing rapidly.
Recent performance breakthroughs in ML, in-
cluding advances in deep learning and the avail-
ability of powerful, easy-to-use ML toolboxes,
have led to renewed interest in ML among geo-
scientists. In sEg, researchers have leveragedML
to tackle a diverse range of tasks that we group
into the three interconnected modes of automa-
tion, modeling and inverse problems, and dis-
covery (Fig. 3).
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Automation is the use of ML to perform a
complex task that cannot easily be described by a
set of explicit commands. In automation tasks,
ML is selected primarily as a tool for making
highly accurate predictions (or labeling data),
particularly when the task is difficult for humans
to perform or explain. Examples of ML used for
automation outside the geosciences include
image recognition (14) or movie recommenda-
tion (15) systems. ML can improve upon expert-

designed algorithms by automatically identifying
better solutions among a larger set of possibili-
ties. Automation takes advantage of a strength
of ML algorithms—their ability to process and
extract patterns from large or high-dimensional
datasets—to replicate or exceed human perform-
ance. In the sEg, ML is used to automate the
steps in large-scale data analysis pipelines, as
in earthquake detection (16) or earthquake early
warning (17–19), and to perform specialized, re-

petitive tasks that would otherwise require time-
consuming expert analysts, such as categorizing
volcanic ash particles (20).
ML can also be used for modeling, or creating

a representation that captures relationships and
structure in a dataset. This can take the form of
building amodel to represent complex, unknown,
or incompletely understood relationships be-
tween data and target variables; e.g., the rela-
tionship between earthquake source parameters
and peak ground acceleration for groundmotion
prediction (21, 22). ML can also be used to build
approximate or surrogate models to speed large
computations, including numerical simulations
(23, 24) and inversion (25). Inverse problems con-
nect observational data, computational models,
and physics to enable inference about physical
systems in the geosciences. ML, especially deep
learning, can aid in the analysis of inverse prob-
lems (26). Deep neural networks, with architec-
tures informed by the inverse problem itself, can
learn an inverse map for critical speedups over
traditional reconstructions, and the analysis of
generalization of MLmodels can provide insights
into the ill-posedness of an inverse problem.
Data-driven discovery, the ability to extract

new information from data, is one of most ex-
citing capabilities of ML for scientific applica-
tions. ML provides scientists with a set of tools
for discovering new patterns, structure, and rela-
tionships in scientific datasets that are not easily
revealed through conventional techniques. ML
can reveal previously unidentified signals or phy-
sical processes (27–31), and extract key features
for representing, interpreting, or visualizing data
(32–34). ML can help to minimize bias—for ex-
ample, by discovering patterns that are counter-
intuitive or unexpected (29). It can also be used
to guide the design of experiments or future data
collection (35).
These themes are all interrelated; modeling

and inversion can also provide the capability for
automated predictions, and the use of ML for
automation, modeling, or inversion may yield
new insights and fundamental discoveries.

Methods and trends for
supervised learning

Supervised learning methods use a collection of
examples (training data) to learn relationships
and build models that are predictive for pre-
viously unseen data. Supervised learning is a
powerful set of tools that have successfully been
used in applications spanning the themes of
automation, modeling and inversion, and dis-
covery (Fig. 4). In this section we organize recent
supervised learning applications in the sEg byML
algorithm, which we order roughly by model
complexity, starting with the relatively simple
logistic regression classifier and endingwith deep
neural networks. In general, more complex mod-
els require more training data and less feature
engineering.

Logistic regression

Logistic regression (36) is a simple binary classi-
fier that estimates the probability that a new data
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Fig. 2. The function space used by
domain experts and that used by
ML.The function space of user-defined
functions employed by scientists, in
contrast to the functional space used
by ML, is contained within the entire
possible function space. The function
space that ML employs is expanding
rapidly as the computational costs and
runtimes decrease and memory,
depths of networks, and available
data increase.

The full function space

Functions explored 
by current machine 

learning methodologies

Domain 
speci!c classes 
of functions

Fig. 1. How scientists analyze data: the conventional versus the ML lens for scientific analysis.
ML is akin to looking at the data through a new lens. Conventional approaches applied by domain
experts (e.g., Fourier analysis) are preselected and test a hypothesis or simply display data
differently. ML explores a larger function space that can connect data to some target or label. In
doing so, it provides the means to discover relations between variables in high-dimensional space.
Whereas some ML approaches are transparent in how they find the function and mapping, others are
opaque. Matching an appropriate ML approach to the problem is therefore extremely important.
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karianne_bergen@brown.eduQuestions? @KarianneBergen

Big Data Analysis is helping Earth scientists 
extract more knowledge & insights 

from larger, more complex data sets than ever before.

ご清聴ありがとうございました。
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