

Гоноки Forum for Creativity

Ocean Bottom Detector: frontier of technology for understanding the Mantle by geoneutrinos

Hiroko Watanabe for the OBD working group* Research Center for Neutrino Science, Tohoku University, Japan

* K. Inoue¹, T. Sakai¹, H. Watanabe¹, W. F. McDonough^{1,2,3}, K. Ueki⁴, N. Abe⁴, M. Kyo⁴, N. Sakurai⁴, E. Araki⁴, T. Kasaya⁴, H. Yoshida⁴

- 2. Department of Earth Science, Tohoku University

1. Research Center for Neutrino Science, Tohoku University 3. Department of Geology, University of Maryland 4. JAMSTEC (Japan Agency for Marine-Earth Science and Technology)

Geoneutrinos

Many seismically imaged structures and chemical heterogeneities in the mantle

Geo-neutrino can directly define power to drive the Earth's engine

Neutrino Geoscience: Current and Future

first measurement in 2005

beyond modern land-based detector transforming our vision of deep Earth

Directionality

Current : KamLAND Latest Results

Dataset : Mar, 2002-Dec, 2021 Livetime : 5227 days (low-reactor phase : 2590 days)

Massive dataset of low-reactor period \rightarrow precise measurement of U and Th contributions

E_p [MeV]

Current : KamLAND Latest Results

Accepted by GRL, "Abundances of uranium and thorium elements in Earth estimated by Geoneutric Spectres of U.Th

Madiogenic Heat

Adding heat estimate from crust, ²³⁸U : **3.4** TW, ²³²Th : **3.6** TW

 $Q^{\rm U} = 3.3^{+3.2}_{-0.8} ~{\rm TW}$ $Q^{\rm Th} = 12.1^{+8.3}_{-8.6} \,\,{\rm TW}$ $Q^{\rm U} + Q^{\rm Th} = 15.4^{+8.3}_{-7.9} \,\,{\rm TW}$

Model Rejection

HighQ model is rejected at 99.76 % C.L. (homogeneous mantle) 97.9% C.L. (concentrated at CMB)

Improve the distinct spectroscopic contributions of U and Th

Multi-site Measurement + OBD

Observation =
$$Crust$$
 + Mantle
(y = x + b)

Near Future...

3 multi-site measurements can constrain mantle contribution.

Crust estimation needs to be accurate.

+ OBD

OBD can directly measure mantle contribution.

OBD Motivations

• Direct Measurement of Mantle

need to be far from crust can be far from reactors

Multi-site Measurements

Solve the mystery of deep Earth! First detector for mapping the inhomogeneous mantle

Multidisciplinary Detector

Šrámek et al (2013) EPS, <u>10.1016/j.epsl.2012.11.001</u> **Mantle/Total**

OBD Motivations

Direct Measurement of Mantle

need to be far from crust can be far from reactors

• Multi-site Measurements

Solve the mystery of deep Earth! First detector for mapping the inhomogeneous mantle

Multidisciplinary Detector

Šrámek et al (2013) EPS, <u>10.1016/j.epsl.2012.11.001</u> Mantle Geoneutrino Flux

OBD Motivations

Direct Measurement of Mantle

need to be far from crust can be far from reactors

Multi-site Measurements

Solve the mystery of deep Earth! First detector for mapping the inhomogeneous mantle

• Multidisciplinary Detector

Physics, Geoscience, Mantle drilling, Biology, New technology,...

Physics:

- multi baseline measurement of reactor neutrinos
- astro particle physics
- dark matter measurement with less-neutron background etc.

OBD Present & Future

Technical test & world's first measurement in the ocean with LS detector * Install detector into ~1km seafloor (JAMSTEC's Hatsushima Observatory), take

data for several months

measure muon late in the sea \rightarrow input parameter for future large detector

* Technical developments are in progress.

Hatsushima Observatory

electrical & optical connections to near coast, monit cameras, etc. 3

OBD Present & Future

E reagion

All

Geo-nu

No progress...

2019 we are here 2020-2022 ~20 kg

Technical demonstration & environment measurement in the sea

deep sea neutrino & muon flux, ocean water density & temperature, radioactivity \rightarrow input parameters for ~1.5 kt detector design

First clear mantle signal

- Detector simulation study is in progress.
- Hawaii is possible position.
- Detector should be installed at ~4km deep sea to Low temperature (2-4°C) shield muons

Reactor

4.13

1.53

Acci.

1.92

1.90

Backgrounds

0

0

3.88

2.96

(mantle)

Signal

Th

1.64

(4.61) (1.15) (5.76)

6.59

Total

8.23

* Mantle geoneutrino sensitivity

[Events/year]

- highQ model: 1year \rightarrow 3.7 σ middleQ model: $3year \rightarrow 3.5\sigma$
- lowQ model:

(a,n) He-Li Fast-neutron Total

<2.42

<0.58

Technical Developments

PMT shield **Needs : low background** pressure resistant

ref) IceCube experiment *

Acrylic

- low background
- pressure resistant : <40MPa broken

Pressure test @JAMSTEC

can not be used

structural calculation

Glass (OKAMOTO Glass Co.)

- pressure resistant
- very high impurities

[g/			
	238 U	²³² Th	⁴⁰ K
target	1x10 ⁻⁸	1x10 ⁻⁸	1x10 ⁻⁸
normal glass	~1x10 ⁻⁷	~1x10 ⁻⁷	~1x10 ⁻⁷
our work	1.4x10 ⁻⁸	<5.0x10 ⁻⁹	3.4x10 -9
reduction	1/10	1/500	1/300

- * cleaner material selection
- Pt coating on the melting pot

enhance the size (20 inch)

Liquid scintillator

LAB(oil) + PPO(fluorescents)

Low temperature

light yield

Technological development has been started!

• For two centuries we have asked *what is the energy that drives the Earth?*

- Geoneutrinos are unique and new tool to measure directly the Earth's interior. Strong way to measure amount of radioactive elements in the
- •To date, physics experiments have shown the usefulness of geoneutrinos. Interdisciplinary community has furthered its connection over these past 15 years.
- "Neutrino Geoscience" : <u>collaborations between geology</u>, <u>physics and beyond</u> Ocean Bottom Detector (OBD) = Breakthrough
- - OBD has strong power to measure mantle contribution directly

<Transformative insights> constrain the planet's cooling history