

Risk-based Inspection

Experience of an Oil & Gas operator

TOTAL Energies, France

Tohoku Forum, November 9th of 2023

Ricardo Gonzalez

Contents

TotalEnergies

- RBI, what it is
- How it works and example
- Benefits and reasons to adopt
- Requirements and limitations
- History of RBI in TotalEnergies
- Deployment effort
- Additional tools
- Leading indicators
- Calculation details
- Digital RBI
- Conclusions

In-service inspection

Inspection actions to **identify degradation** based on **credible industry damage** and failure modes, to determine **further actions** to **control the operational risk, predict equipment end of life** and feed the **fitness for service** evaluation

And not...

Inspection actions to **verify** equipment's **conformity to design code** and determine maintenance actions to **recover its original condition** and **strength**

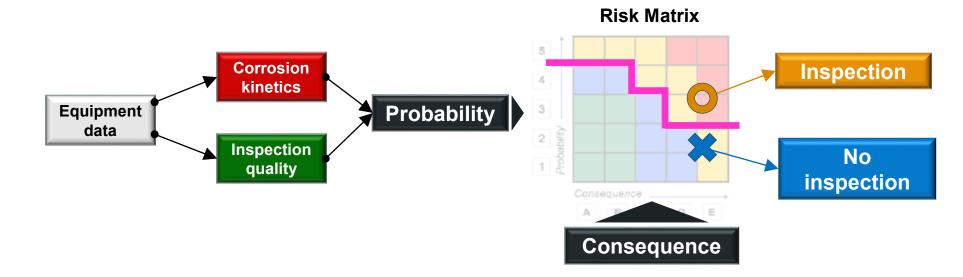
Inspection approach	Reactive	Calendar base	Condition base	Risk base
evolution	Ens.	2 3 4 9 10 1 DERDLINE 17		

Inspection approach evolution

·	Reactive	Calendar base	Condition base	Risk base
Strategy	Run to failure	Legal requirement	Equipment life	Risk management
Benefits	Reduced budget	Leveled budget	Reliability assurance	Optimized scope, budget & reliability
Drawback	Costly failures	Costly failures & budget	Feed-back needed	Validity of prediction
RAGAGEP ^(*)	None	Legal text	API Codes: Vessels 510, Piping 570, AST 653, Heaters/Boilers 573, PSV 576	API 580 supported by 581, 571 & 584

(*) Recognized And Generally Accepted Good Engineering Practice

RBI, a systematic proces that...



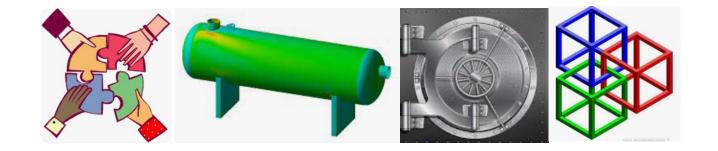
Begins with *identification of facilities* or equipment

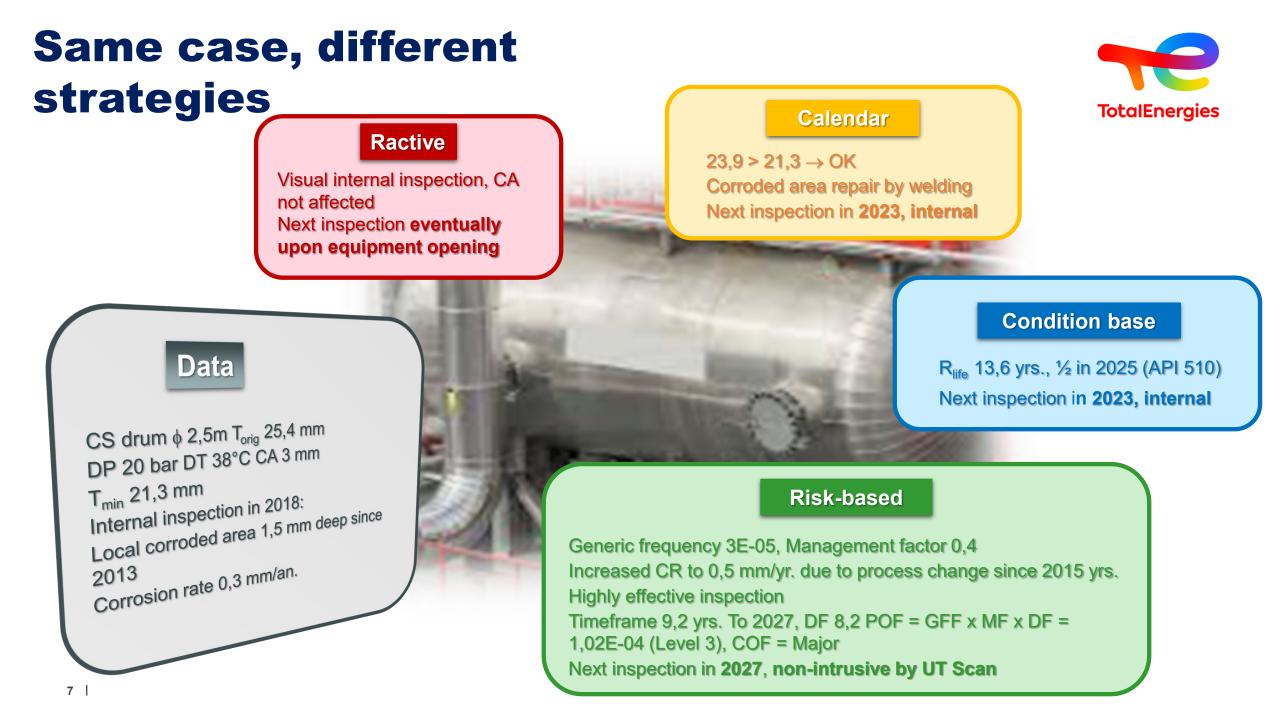
Continues with a *determination of risk,* via probability and consequence of failure

And culminates in the creation of an *inspection risk-based management plan* based on the credible damage mechanism(s) and the risk of failure

Inspection teams should utilize the RBI output to **effectively and efficiently prioritize** the execution of their **inspection programs**

Aimed to provide minimum elements for...




Developing, implementing, and maintaining inspection programs

Of *pressure-containing* equipment

To insure **safe and reliable operation** through **risk-prioritized inspection**

Through a *framework* that specifies the *minimum requirements* and expectations needed for a *quality application* of the methodology

Benefits

Identification of damage mechanisms and failure modes

Identification of equipment with insufficient or inadequate inspection history

Safety, health, and environmental and/or economic consequences

Recommendation of inspection methods and techniques

Establishment of the extent of inspection

Optimum inspection interval

Development of cost-effective actions

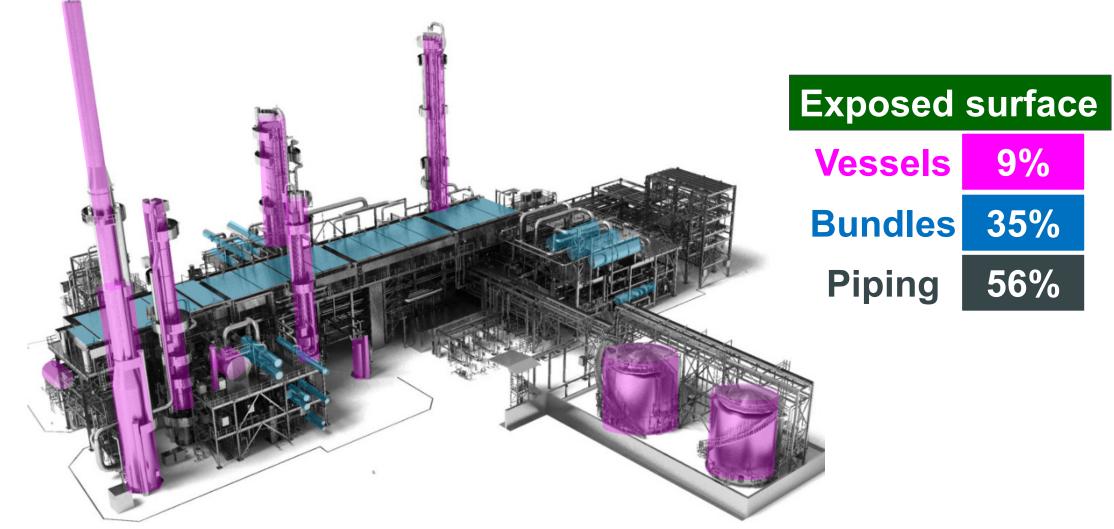
Overall reduction in risk for the facilities

Other required mitigation

Integrity and reliability improvement at the same time

RBI limitations

- RBI does not compensate for mistakes due to lack of skills on inspection
- The effectiveness of an inspection can be limited
 - Lack of coverage
 - NDT limitations
 - NDT procedures and technician skills

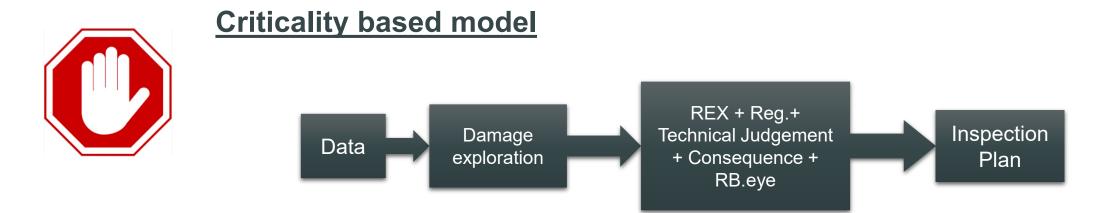

Richmond fire learnings

- 6 injured & unit destroyed)
- Corrosion by Sulphidation
- No awareness of increasing temperature and opportunity crude processing
- No program for low silicon CS
- No history of spool change => no dedicated CML

Typical oil Refinery

Unbalanced inspection effort

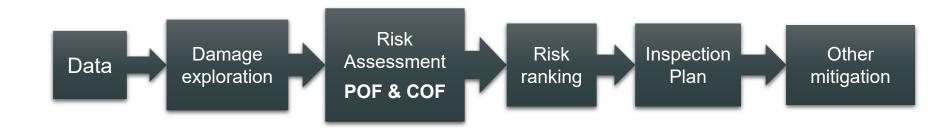
Equipment type	Exposed surface	Inspection Effort	HC Leaks	Business interruption
Vessels	9%	83%	7%	14%
Bundles	35%	1%	7%	50%
Piping	56%	16%	78%	32%


- > 83% on 9% of exposed surface that produces 10% of problems
- 16% on components leading to 78% of leaks
- > 1% on reliability bad actors

11

History of RBI in TotalEnergies

1990-93	Company became sponsor of RBI from the API
1995-99	First qualitative RBI Guide for vessel and piping
2000-03	Company develop their own RBI software with an expert body
2004	French inspection guide allows using RBI to optimize inspection periodicities
2007	Important increase of maintenance cost due to inspection request
2008-10	First quantitative RBI guide for Refining, based on regulations flexibility
2011-12	Cultural change need identified. Communication, Audits and the concept of acceptable risk installed Improvement of Integrity operating windows and Fitness-for-service also launched



History after concept change

2011-12	Cultural change need identified. Communication, Audits and the concept of acceptable risk installed Improvement of Integrity operating windows and Fitness-for-service also launched
2013-17	Deployment RBI and inspection effectiveness training and coaching and the implementation of turnaround scope reviews
2018-19	Refining & Chemicals deploy a New RBI software
2020	Concept of Dynamic RBI starts to be largely used for turnaround postponement assessment due to COVID
2021-23	RBI software completed in Refining and Chemicals and RBI concept and new software started in Exploration and production facilities

Risk-based

Framework of an RBI-like inspection team

•9 big domains, 54 workflows and 222 tasks

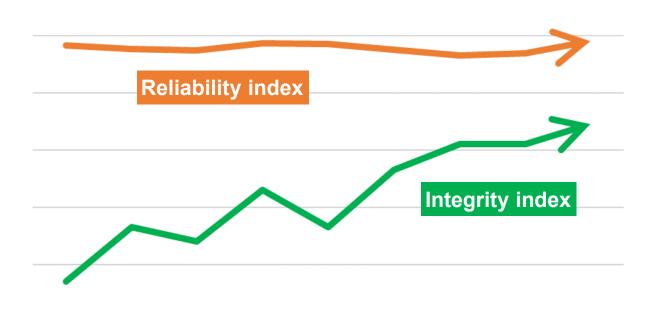
	A 1.89	
RBI Review	Field inspection	CUI Plan
Turnaround preparation	Damage review	MOC
FFS	New	REX
	- Shannan	and the second second

Main tasks & workload of a typical

- realine spector, main actor to keep RBI up-to-date
- In-house Unit inspector and assistant mostly dedicated to plan & inspect
- External Unit inspector helps on planning and Turnaround preparation

			Main workload estimation (MH/yr. medium size refinery)					
		σc				Corrosion update (IOW issue)	13%	
		und tion	Method ins	Method inspector		RBI update	13%	
RBI Rev	view	ara				Special RBI (Non-model, etc.)	13%	
39%		Turnal		In house	2300	Field inspection	93%	
		F 전	Unit inspector	III HOUSE	2300	Assessment following issues	4%	
		18%			3400	Inspection planning	25%	
				External		QA review	17%	
						Turnaround preparation	11%	
Field	Damage	CUI Plan				Inspection planning	44%	
inspection	review	10%	Assistant Inspector		2100	Inspection facility request	11%	
17%	11%	11% MOC 能 New				Corrosion loop update	11%	
	2,5% REX	Other (Process, Corrosion, FFS, etc.)		1800				

Additional methods and tools



- Some components not well managed by the RBI models and software's
- Also, some damage mechanism are not modelized, and require a special approach
- Creep damage can be managed through FFS dedicated tool instead of RBI
- RBI for exchanger bundles can be supported by statistical analysis and tools
- Statistical evaluation of corrosion rate should be supported by special tools
- Management of risk beyond RBI can be supported by multidisciplinary Layer of Protection Analysis (LOPA)
- Risk-based cost/benefit assessment tools helps on financial decision making

Leading indicators

- Early result showed important reduction of inspection workload, mainly during Turnarounds
- Inspector cultural change progressively followed of the approach acceptance from Authorities
- Integrity index showed improvement while reliability index remined stable

2014 2015 2016 2017 2018 2019 2020 2021 2022

Probability of failure calculation

- The probability of failure in API RBI is determined by three parameters:
 - Generic failure frequency
 - Damage factor
 - Management system factor

$POF(t) = gff D_f \cdot F_{MS}$ 1,0E-04 1,0E-05 **Based on industry data** Small Pipe 1,0E-06 Due to fabrication flaws \checkmark Medium Pipe ✓ Non service-related damage ▲ Vessel/Large Pipe ✓ Prior to operating exposure Tank shell 1,0E-07 Pinhole Corrosion Small Total Large

Generic failure frequency

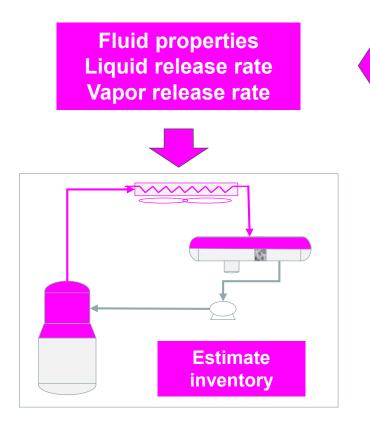
rupture

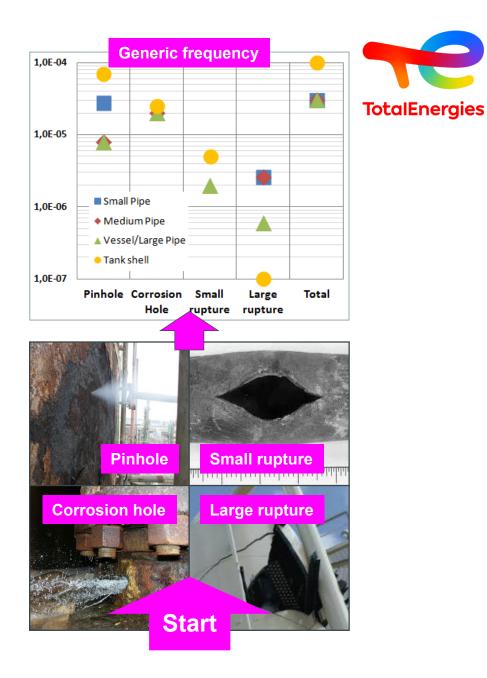
Hole

rupture

Damage factor calculation

• The damage factor is the amount of damage as a function of time and the effectiveness of inspection

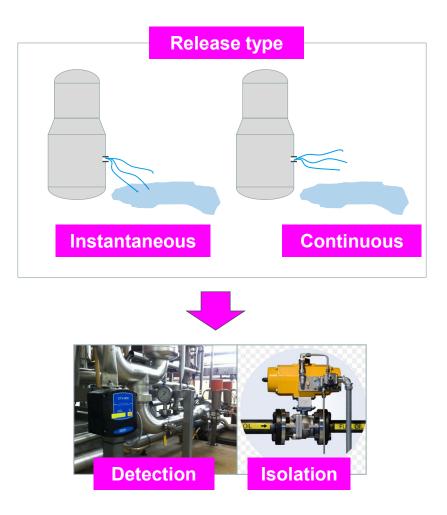

$$POF(t) = gff \cdot D_f \cdot F_{MS}$$

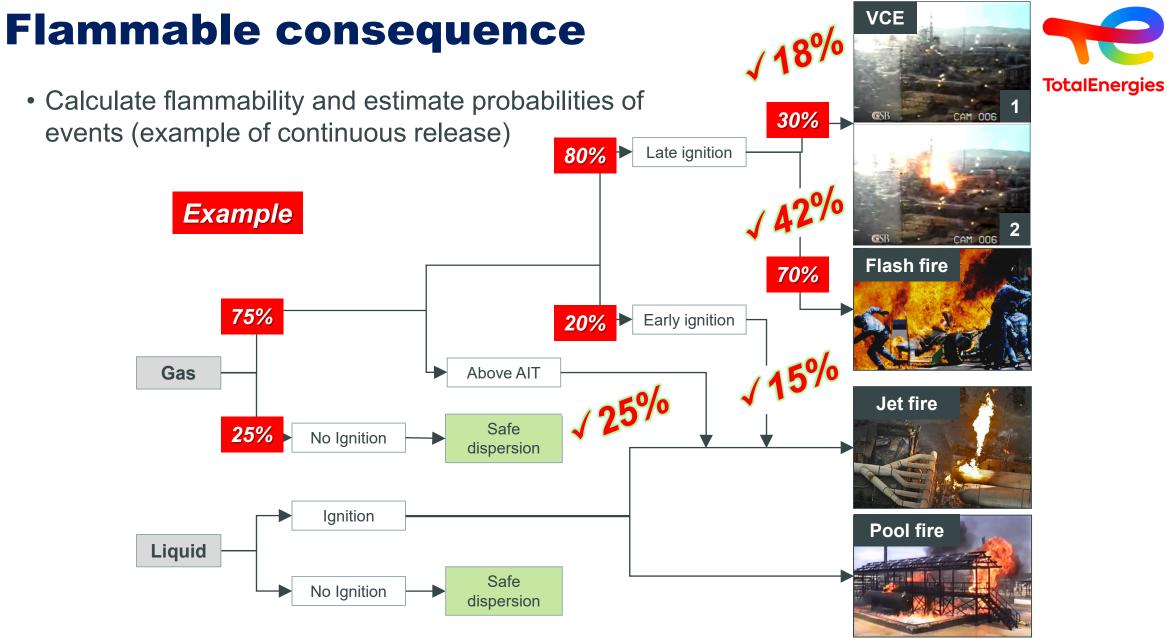


 $\boldsymbol{D}_{f-total} = \boldsymbol{min} \left[\boldsymbol{D}_{f}^{thin}, \boldsymbol{D}_{f}^{elin} \right] + \boldsymbol{D}_{f}^{extd} + \boldsymbol{D}_{f}^{scc} + \boldsymbol{D}_{f}^{htha} + \boldsymbol{D}_{f}^{brit} + \boldsymbol{D}_{f}^{mfat}$

Fluid inventory calculation

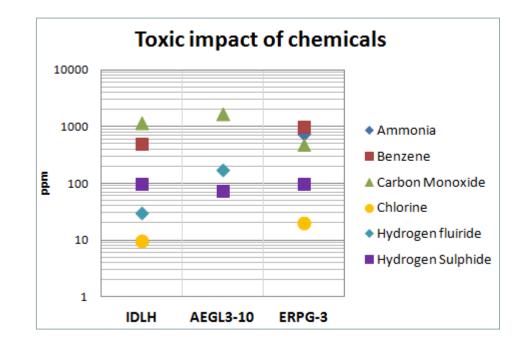
• Select hole sizes, Determine fluid properties, calculates release rate and estimate fluid inventory





Type of release estimation

• Determine release type and assess detection and isolation systems



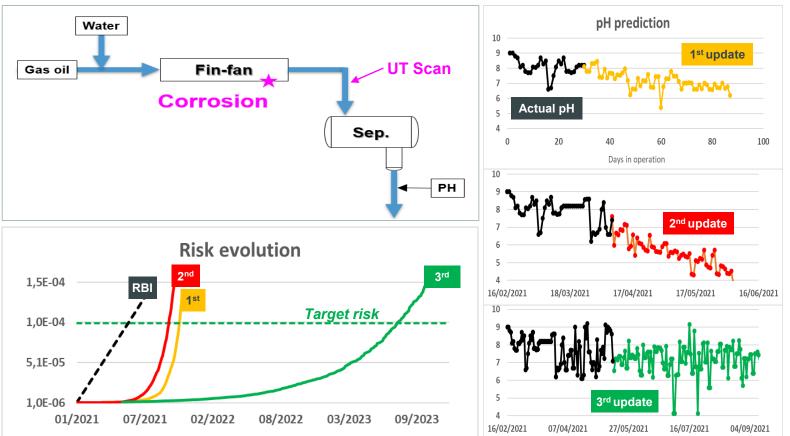
VCE: Vapor cloud explosion, AIT: Auto ignition temperature

Other consequences

- Calculation of toxic consequence
 - Common chemical industry toxic materials & representative fluid
 - Determination of toxic release and probabilities
 - Toxic COF for HF, H2S, Ammonia and Chlorine
- Non-Flammable Non-Toxic consequences
 - Steam, acid caustic leaks
- Environmental consequence
 - Based on remediation & clean-up cost
- Financial consequence
 - Cost of equipment (and surroundings) repair and replacement
 - Business interruption

IDLH: Immediately dangerous to life or health, **AEGL3-10**: Acute exposure guideline Level (10⁻), **ERPG-3**: Emergency response planification guideline

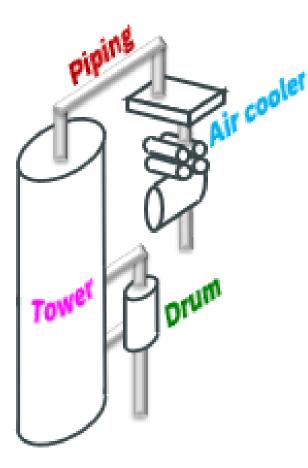
Inspection entering the digital era



POF: Probability of failure COF: Consequence of failure, FFS: Fitness-for-service

Example

- Following corrosion issue in 2020, a Fin-fan's conventional RBI asked inspection mid 2021
- Process improvements led to mitigate corrosion, but RBI at fixed corrosion rate could not managed this improvement
- Enhanced RBI applied and updated once a month
- Outlet line used as inspection monitoring location once a month
- Turnaround moved to September 2023 instead of 2021



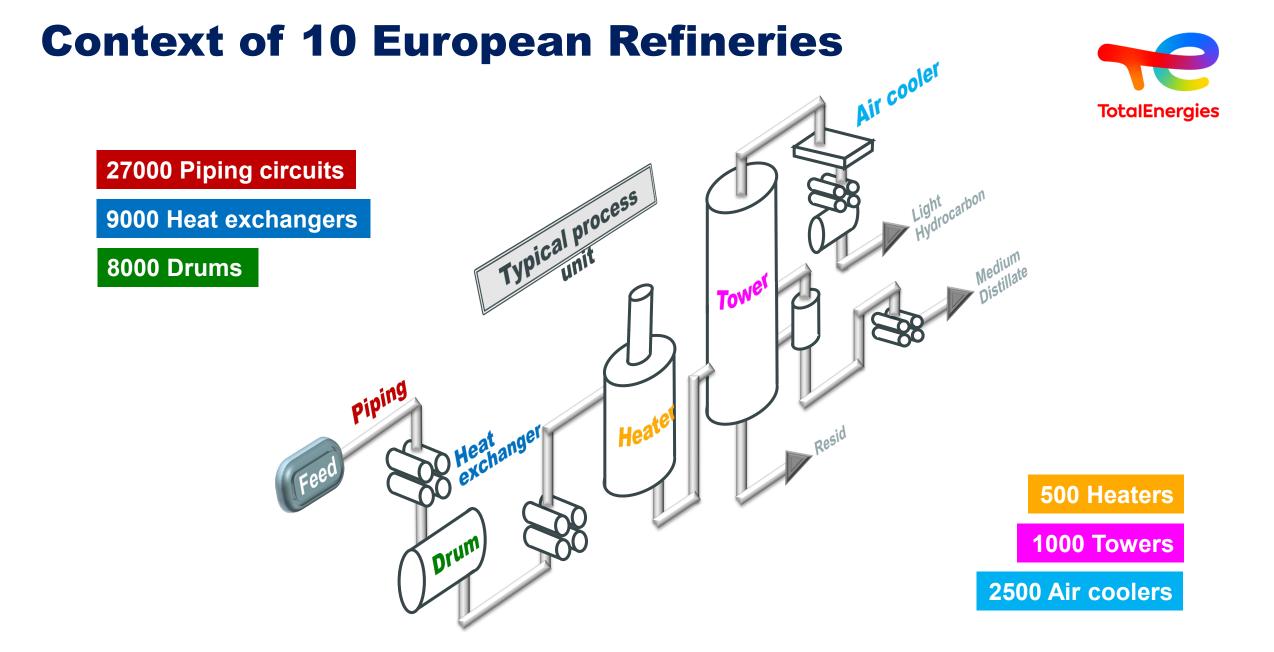
Digital transformation of Inspection

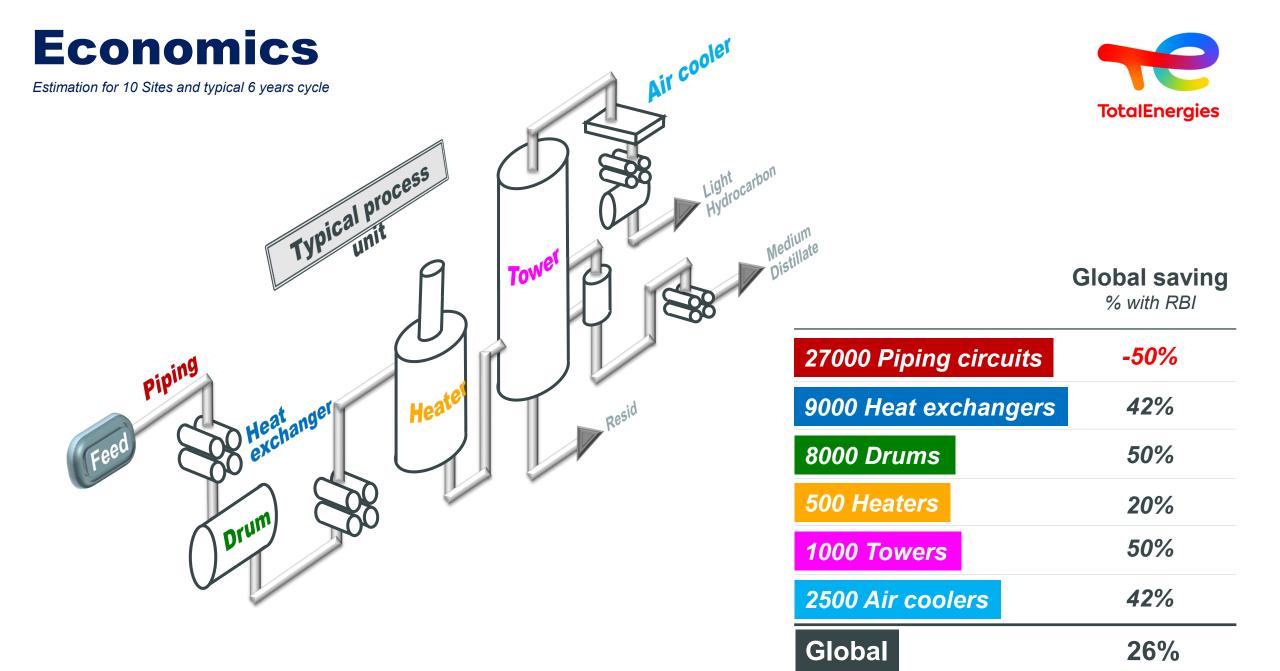
entist

/ NDT

Approaches & context

				Ъ.	in;	ě	sc.	
Step	Approach	Piping	Equipment	Extrapolate to?	Inspect	Field	Enginee	Data s
1	Calendar	Visual	None	None	2	1		
2	Condition	TML & RLife	Visual + spot UT	None	2	2		
3	RBI	Fixed CR	RBI + corrosion model	None	1	1	1	
4	Enhanced RBI	Dynamic RBI	Risk & FFS simulation	Connected equipment	1⁄2	1	1	1⁄2
5	Smart integrity	Machine learning applied to process & inspection history	Damage & risk simulation	All Refinery		1	1⁄2	1
6	Digital integrity	Machine learning up process data and fix	All Refinery			?		


Summary and conclusions



- Understanding the risk-based decision-making process is a key of success
- Integrity improvement should be highlighted first
- Cultural change rather coming from training and coaching
- Deployment & update effort must be optimized and audited, don't create monsters!
- Scope review from knowledgeable central office help to assure world class performance
- Integrity operating windows essential for the credibility of conventional RBI internal corrosion management
- Additional tools required to support change management
- Management of risk beyond RBI essential for integrity assurance
- Digital RBI must follow and should be managed with care due to implications on skills, manpower and regulations

Backup

RBI basic requirements

Risk management

Risk base

Optimized scope, budget & reliability

> Validity of prediction

- ✓ Integrity assurance strategy based on risk management
- ✓ Stick to risk-based upon decision-making approaches
- Implementation of solid monitoring of process variables related to degradation
- Assure effective management of change

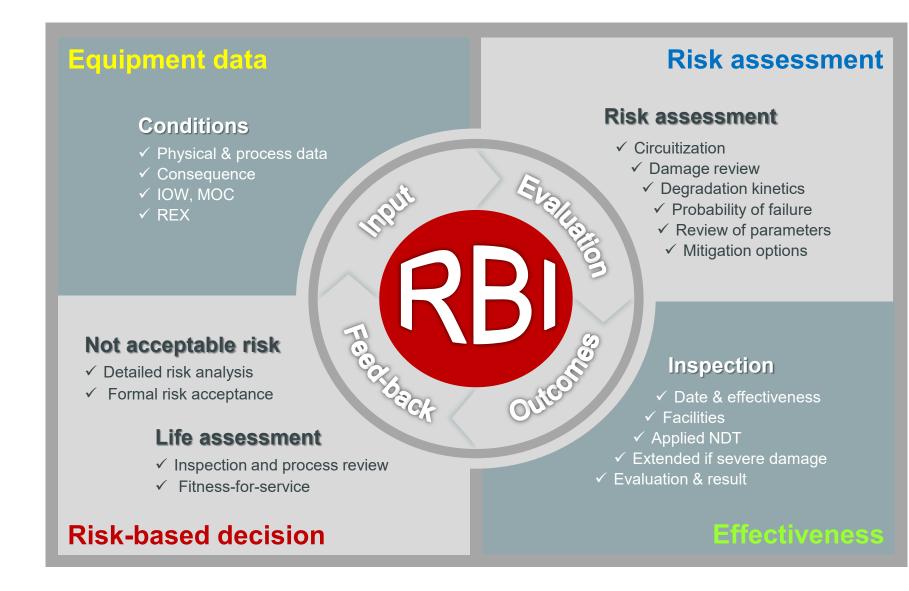
Integrity operating windows

Structured analysis

- Review parameters, kinetics and the damage mechanism
- Review current plan (inspection date)
- Assess if RBI can be jeopardized, if yes, trigger deep assessment
- Record the analysis

Examples oof IOW violations

- Change in the fluid's Sulphur content
- Stop of corrosion inhibitor injection
- Change in the pH or fluid chemical composition
- Cathodic protection not working/not under control


RBI performance in 2011

Remaining risk per EDC	
Ref 1	
Ref 2	
Ref 9	
Ref 7	
Ref 3	
Ref 6	
Ref 8	
Ref 5	
Ref 4	
Total Refining	

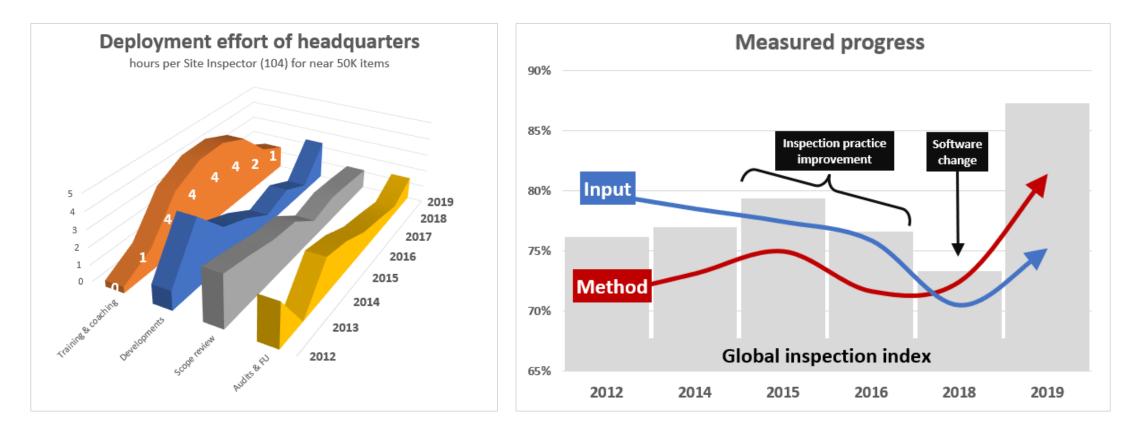
Inspection framework

Inspection manager main responsibilities

TotalEnergies

- Inform Site management of non-acceptable risks
- Set-up inspection policy
- Assure inspection plan
- Inspection activity tracking and reporting
- Ensure training and skills of Inspection personnel
- Manage inspection activities
 - Role and responsibilities of Inspection team
 - Track inspection schedule recommendations
 - Use of FFS
 - Manage and optimize Inspection associated costs
 - Maximize on-stream non-intrusive inspections
 - Assure resources
 - Implement best-practices
 - Deploy new NDT technology

Inspection team duties



- Implement inspection methods
- Outline inspection plans
- Assess inspection results and write inspection reports
- Ensure monitoring of corrosion/degradation issues
- Ensure application of fitness-for-service
- Manage database and equipment history records
- Provide information for inspection budget preparation, cost tracking, annual review and inspection Contracts
- Provide advice and supervision on quality assurance activities

RBI deployment in downstream

- Deployment RBI means a big Company effort and a « users » cultural change
- Based on experience, a cycle of > 6 years must be considered
- A combined effort of Development, communication, training and audit need to be put in place

Example of upstream

- 5 weeks deployment for CPF and 23 for a FPSO
- Core team of 4 Inspectors that can be outsourced
- 3 Engineers (Site or Outsourced)
- 10 assistants and clerks that can provide the Site (to adapt based on complexity)

Item	Onshore (CPF)	Offshore (FPSO)
Equipment	362	1599
Part	378	1766
Main units	1	7
Inspection task	756	3532

Position	Team	CPF		FPSO	
FOSITION	ream	Weeks	Duration	Weeks	Duration
Method inspector	2	7	4	40	20
Unit inspector	2	10	5	49	24
Assistant inspector	4	25	6	139	23
Corrosion Eng.	1	1	1	6	6
Process Eng.	1	2	4	14	27
Valoriz. Eng.	1	1	2	10	10
Maintenance Eng.	1	1	2	10	10
Clerk	4	4	5	98	24

Inspection entering the digital era

- RBI, the **best platform** for **integrity** and **business-related** decision making
- It still heavily rely on expert judgment
- Corrosion rate determination leads to frequent pit falls
- Strongly improvement through IOW, but not easy to integrate into RBI
- Process control not under use to drive risk determination

Questions to answer

- ✓ Is RBI & integrity operating windows enough?
- ✓ Continue to rely on expert judgment case by case?
- ✓ What are the alternatives?
- ✓ How degradation works?
- ✓ What if using prediction models based on process control and use Inspection as a calibration factor?

