GREMAN matériaux microélectronique acoustique nanotechnologies

Characterization of porous metal backing for high-temperature ultrasonic transducers

Dang Chi Nguyen^{1.2}, Frédéric Navacchia¹ , Louis-Pascal Tran-Huu-Hue², Guy Feuillard². 1 CEA St-Paul-Lez-Durance. France 2 INSA Centre Val de Loire. GREMAN Laboratory. UMR CNRS 7347. Blois France

Outline

Introduction **Porous Materials** Characterization at room temperature Characterization in temperature **Transducer** simulations Conclusion

Development of the new nuclear plant generation

Conventional transducer

Simulated pulse echo response of a 4 MHz piezoelectric transducer based on a PZ27 ceramic (Ferroperm) radiating in water

Role of backing:

- Damp the vibration of the piezoelectric crystal
- Attenuate the US waves

Effect on the sensitivity axial resolution

High temperature transducers LiNb0₃ based

$LiNb0_3$: $T_c \ge 1200^{\circ}C$

High-temperature ultrasonic transducer Diameter 40 mm

High temperature transducers LiNb03 based

Pulse echo and frequency response in water

 $f_p = 4.6 MHz$! Center freq of LiNbO3 $f_0 = 0.7 MHz$ for the transducer (coupled resonators)

Are porous metal suitable to be used as a backing for High Temperature applications?

- High attenuation coefficientAcoustic impedance
- •Physical and mechanical
- •The coefficient of thermal expansion (CTE).
- Porous metals
- •Electric properties
- •Transducer assembly (brazing capability)

Porous stainless steel (Amespore)

Porous stainless steel (SS 316L)

Material	Nominal thickness (mm)	Measured Thickness (mm)	Nominal density (kg.m ⁻³)	Measured density (kg.m ⁻³)	Nominal porosity (%)	Measured porosity (%)	Nominal Pore size (µm)
SSU02-10	10	9.98	5900 - 6300	6059	21 - 26	25.20	1.7
SSU05-10	10	10.30	5000 - 5600	5073	32 - 37	36.91	7.6
SSU10-10	10	10.13	4700 - 5100	5268	36 - 41	34.97	10.9
SSU15-10	10	9.92	4600 - 5000	4526	37 - 42	44.12	13.5
SSU25-10	10	9.88	4400 - 4800	4444	39 - 44	45.14	26.5
SSU40-10	10	10.34	4000 - 4400	3828	44 - 49	52.75	39.0
SSU60-05	5	5.05	3600 - 4000	3811	49 - 54	52.95	59.5
SSU60-10	10	9.89	3600 - 4000	3856	49 - 54	52.04	59.5

SSU40-10 52% porosity

SSU02-10 25% porosity

Characterization @ room temperature

Insertion substitution method

$$\Delta t = t_1 - t = d\left(\frac{1}{c} - \frac{1}{c_w}\right) \Rightarrow c$$

$$\alpha = -20 \log\left(\frac{\overline{U}_{T1}(f)}{T.U_R(f)}\right) * \frac{1}{d}$$

Results and discussion

Linear dependence of the variation of the celerity and the acoustic impedance as a function of the porosity. High attenuation of 1.1 dB.mm⁻¹ at 1MHz a porosity of 45 %.

=> A backing thickness of 20 mm leads to an attenuation of 40 dB at 1 MHz, which is largely sufficient for developing imaging systems

High-temperature measurements

Transducer characteristics

Characterization in temperature

Experimental set-up

Sample Holder

Signal received

SSU10-10- Porosity 35% - 200°C - 2MHz

0 — 0% porosity 25% porosity 35% porosity -2 Relative celerity variation (%) oh k -8 100 200 0 300 400 Temperature (°C)

Relative celerity variation

GREMAN

Transducer simulations

Simulations of the reference transducer

Cristal	LiNbO ₃ Z-cut	Front layer / rear layer			
Diameter (mm)	40	Thickness (mm)	1.2 / 2		
Thickness (mm)	0.78	Velocity (m.s ⁻¹)	5740		
Density (kg.m ⁻ ³)	4650	Loss tangent	0.001		
Velocity (m.s ⁻ 1)	7140	Acoustic	46.2		
Acoustic impedance (MRayls)	33.2	impedance (MRayl)			
Relative dielectric constant	29.16	Propagation medium (water)			
Coupling coefficient	0.17	Acoustic impedance (MRayl)	1.5		

Axial resolution

- 47 mm @-6dB
- 93 mm @-20 dB

Influence of the backing impedance on the

Influence of the backing impedance on the

electroacoustic response

Simulation of the pulse-echo and frequency response of a LiNbO3-based transducer

GREMAN

Sensitivity -54.6 dB Axial resolution 1 mm at -6 dB 2 mm at -20 dB Sensitivity-49.8 dBAxial resolution1 mm at -6 dB3 mm at -20 dB

Influence of the backing thickness

HT ultrasonic transducer

- imaging of defects
- improving the axial resolution

Porous metals are good candidates.

- compatible material with high-temperature
- conducting material that allows direct electric contact on the rear face

Characterization at room temperature: porosity 25% to 52 %.

- Celerity ranges from 4500 (25 %) m/s to 2200 m/s (52 %)
- Attenuation ranges from 0.46 dB/mm to 5 dB/mm

Characterization as a function of temperature: porosity of 25% to 35 %.

- Celerity variation decreases by 5% $\Delta T=375^{\circ}C$
- No attenuation variations are observed

Simulations of a HT transducer with such a backing

Strong improvement of the axial resolution

Up to now: Experimental approach

Now :

- Modeling of the acoustic parameters as a function of the porosity level and pore size
- Design and Fabrication of a new high-temperature ultrasonic transducer
- Comparison Th/exp
- Conduct tests in temperature
- Test other cuts for LiNb0₃ and other materials

