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W Background of biomass and nanocellulose utilization for creation of sustainable society and for
circular economy



Creation of sustainable society based on renewable biomass utilization
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Hierarchical structures of crystalline cellulose microfibrils
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M Cellulose microfibrils are renewable and CO,-accumulated bio-nanofibers most abundantly present in plants and most
abundantly increased annually.



Production facilities of CNFs, Cellulose nanonetworks, and MFC in Japan

1: Chemical pretreatment and subsequent mechanical disintegration %
2: Mechanical disintegration in water
3: Bacterial nanocellulose Kusano Sakko 3
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! TEMPO-CNFs have been produced at the industrial level from 2013.

B We have decided separation of roles; R&D in industry for applications and production technologies, while our lab for
fundamental research and advising.



Categories of CNFs: Introduction of charged groups to pulp fibers in pretreatment

Agricultural None _ _ Hemicellulose-COO @
wastes, etc. Lignin phenolic-O
Non-wood None - Asahi Chemical, etc. Hemicellulose-COO @
pulp, etc.
_ Daio Paper, Mitsubishi Paper, . : ) —
None Tokushu Tokai Paper, etc, Residual hemicellulose-COO ©
L TEMPO/NaBr/NaClO/ Nippon Paper i i —
C6-TEMPO-oxidation Water DKS, ITT Leyonier, FPL, etc. C6-carboxylate cellulose-COO @
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Phosphite esterification H(NH,)PO/ureal/water Daio Paper Phosphite ester cellulose-OP(=0)O @
Carboxymethyl : ) _
N etherification CICH,COONa/NaOH/water  Nippon Paper Carboxymethylcellulose-OCH,COO @
wood pulp ; _
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Differences between chemically pretreated CNFs and mechanically fibrillatediENES:

CNFs prepared by chemical pretreatment and
disintegration in water

TEMPO-mediated oxidation —» C2/C3-oxidation,

CiEmIEE! phosphorylation, sulfate esterification, carboxymethyl
pretreatment o
etherification, etc.

Surface charge CNF-COO-, CNF-0O-P0O;%", CNF-0O-PO,",

g CNF-OS0O;~, CNF-OCS,~, CNF-OCH,COO~
CNF content in < 204
water
Width 3 nm or 3-100 nm, depending on disintegration conditions

homogeneous ~3 nm width

Morphology

Mechanically fibrillated CNFs

N/A

Hemicellulose-COO~

> 10%

10-200 nm




W Fundamentals and application of TEMPO-mediated oxidation to cellulose and polysaccharides



TEMPO-catalyzed oxidation of polysaccharides

Advantages: COOH CoO Na'
B Aqueous systems at pH 6—10 - 0 oH 10 o °
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Isogai, Polymer Journal (2022)



TEMPO-catalyzed oxidation of various polysaccharides, starting from 1996
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Isogai, Polymer Journal (2022)



Position-selective conversion mechanism of primary OH groups to cartoxy groups
by TEMPO-mediated oxidation
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Isogai et al., Progress in Polymer Science (2018) Carboxylic acid



TEMPO-catalyzed oxidation process of plant, BC, tunicate, & algal celluloSefibErS

Wood cellulose fibers (1 g)

Water (100 mL) ‘L . A
TEMPO (0.0125 g) \ Carboxy content: 0.01 mmol/g

NaBr (0.125 g) J' '

Cellulose fiber/water dispersion at R.T.

Recycling NaClO
0.4 M NaOH to maintain pH 10

< Stirring for ~90 min )
TEMPO |

NaC] - Filtratiqn by washing Carboxy‘late content: 1.7 mmol/g
NaBr Washing with water
effluent l
Desalting Fibrous TEMPO-oxidized cellulose y
Fibrous morphologies are unchanged
M Carboxylate content increases from 0.01 to 1.7 mmol/g (170 folds !). before and after oxidation.

Shinoda et al., Biomacromolecules (2012)



Conversion of wood cellulose fibers to TEMPO-oxidized cellulose nanofibers
(TEMPO-CNFs)

Wood cellulose fibers
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Isogai and Zhou, Current Opinion in Solid State and Materials Science (2019)



Distribution of carboxyl groups in TEMPO-oxidized wood cellulose microfibnl
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Hierarchical structure of wood cellulose
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W Cellulose microfibrils are the most abundantly present bio-based nanomaterials on Earth.
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Isogai et al., Nanoscale (2011); Prog. Polym. Sci. (2018)



Mechanism to convert completely nano-dispersed CNFs from wood celluloSETPESS:
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I Osmotic effect and electrostatic repulsion efficiently work between surface-charged cellulose microfibrils in water.



TEMPO-mediated oxidation can be used to plant cellulose fibers for individualizationNtessIngle
microfibrils observable by TEM and AFM
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All terrestrial plant fibers consist of crystalline cellulose microfibrils with homogeneous ~3-nm widths.



B Characteristics of TEMPO-oxidized fibers, nanomaterials, and films



Diverse counterion exchanges of charged groups of CNFs

TEMPO-oxidized cellulose-COONa fibers, nanofibers ——> Cell-COOM or Cell-COONR, fibers, nanofibers

W Switching of hydrophilicity/hydrophobicity
Gas barrier/gas separation
Biodegradability/stability
Electrical conductivity/electric insulation
Thermal conductivity/thermal insulation

M Scaffolds for catalytic performance
Super deodorant performance
Metal organic frameworks

M Air filter performance

M Resistance to high humidity or water, or increase in thermal stability

M Highly strong, light weight, transparent, and thermally stable composites with individually nano-dispersed CNF
elements in polymer matrices are possible to be prepared, according to high aspect ratios of charged CNFs.



Diverse nanocellulose can be prepared from the same TEMPO-oxidized

cellulose fiber: Nano-networks, nanofibers, and nanocrystals

TEMPO-cellulose
nano-networks, CNNeW

Softwood cellulose fiber

Gentle mechanical
disintegration in water

Transparent
dispersion

Carboxy content: ~0.01 mmol/g

TEMPO-mediated oxidation
in water at pH 10

Repeated sonication TEMPO-cellulose nanocrystals, CNCs
in water

Very gentle mechanical
disintegration in water

Transparent
dispersion

Sedimentation in
water without strong
swelling

Zhou et al., Biomacromolecules (2018)



Oxygen-barrier properties were extremely improved

by coating thin TEMPO-CNF film on PET film

1000 ]
TEMPO-CNF film (0.8 pm) _
100 R '!« PE film
? = PET film (25 um) i@ PETHIm ~
= 0 10 1
_% 4 :
O !
E o 1 1
E)_ NE Under dry conditions 4
—~ 0.1 1 ; Ny
C c Saito et al., Soft Matter (2011)
(Ot ]
g — 0.01 _'!ﬁ EVOH film for food/medicine package film
x & ' .
(@ N 1@ Aluminum vapor deposited film
0.001
0.0001
PET film TEMPO-CNF-coated film

W Oxygen permeability decreases to 1/500000 by coating thin film of TEMPO-CNFs on PET film.

W Positron-annihilation-lifetime spectroscopy shows that TEMPO-CNF film contains extremely small pores, d=0.47nm,
without connections.



Quite low coefficient of thermal expansion of TEMPO-CNF films

0.025 . ! | !

0.020

0.015

0.010

Thermal expansion (%)

0.005

0.000

Temperature ( °C)

W Low coefficient of thermal expansion or thermal dimensional stability — required for electronics, flexible display, etc.



W Application of TEMPO-CNFs



Ballpoint pen ink containing TEMPO-CNFs as dispersant for smooth writing
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DORA-YAKI containing CNFs of University of Tokyo Brand
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Regulation of postprandial blood metabolic variables by CNES: bioactivityssit
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W Clear reduction of blood glucose, insulin, GIP concentrations after oral administration of glucose and triglyceride

with TOCN
GIP: glucose-dependent insulinotropic polypeptide
Shimotoyodome et al., Biomacromolecules (2011)



TEMPO-CNF/epoxy composites prepared by surface dual chemical modifications

Modified CNF
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Improved organic solvent affinity by Introduction of small amounts of long
introducing a large amount of benzene chains improves nano-dispersion of
ring compound into the surface TEMPO-CNFs in plastic substrates

Coexilualcrmnse

DS o <
Cellulo=ss=

r s e e
cellulo

= —

"BDsEimBMCNEC L2
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W Compounding a small amount of surface-modified TEMPO-CNFs with plastics improves Kao{?}

the elastic modulus and linear thermal expansion coefficient.
Yamato et al., Cellulose (2021)


https://www.youtube.com/watch?v=8Qgn0HuHgmY

Copper-coordinated cellulose ion conductors for solid-state batteries:

Cu/TEMPO-CNF complex material

f Cu CNF suspension Cvamogj él:lr;y Slurry casting C:/t:: ﬁ? gLengog e
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2 06 v -
8 [e) 0O—PEO/TIO,/LICIO,
g 04 ™ ——romoncno, Cu?*/TEMPO-CNF ion conductors have high Li* conductivity, high
% I transference number, and wide window of electrochemical stability ,
R , and are suitable for safe solid-state batteries.
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Yang et al., Nature, (2021)



Practical applications and developments of TEMPO-CNFs

2015: NPI Crecia started to sell CNF-containing super-deodorant diapers for adults to
decrease helpers’ burden

€D 24

vvcvvtvvv*vuv”v

2015: Mitsubishi Pencil developed CNF-containing ballpoint pen ink dispersants for
smooth writing

2017: Taiyo Holdings developed light-weight and thermally stable electronic boards
containing CNFs (news release)

2019: Sumitomo Rubber started to sell longitudinal direction-oriented CNF-containing
eco-tires for automobiles

2020: Kao developed chemically surface-modified CNF-containing
composite materials for electronics and mobilities '

2020: Toyota developed CNF-containing metallic silver spray
coating for Lexus

2021: Tohoku University developed CNF-containing
supercapacitors for automobiles

2021: Maryland University developed solid-Li butteries using
CNF as efficient Li ion-channels

Potential #ZAS

2022: Mizuno developed CNT/CNF composite golf shafts

B AR RN IS T9001 EHMTR2 (23R
D s S LI

2022: NPI Crecia developed CNF-containing antibacterial CwTUP )

SURGICAL MASK /

masks for medical applications fe B N
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b & Tre won Crosstraec poymer
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2022: Tohoku Seiren: TEMPO-CNF-treated permanent-press clothes




From petroleum-based rubber composites for mobilities to

partly nanocelluose-containing elastomers for sustainable society

Natural rubber «<—— Biomass <—— CO,

|

Nanocellulose

Additives

W Long-term safety, high durability, dry/wet strength, toughness, and low hysteresis loss are required for applications.
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Weight per 100 X-NBR Vol% W Tensile properties are improved by adding the oven-dried
S e RS TEMPO-CNF/resorcinol resin.
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Noguchi et al., Macromolecular Materials & Engineering (2021)



Real-time observation of microcrack growth in TEMPO-CNF/rubber compGoSItess
during tensile deformation

Tensile deformation direction

5 MM

Structures and distributions of TEMPO-CNFs in rubber matrix influence the resultant deformation behavior

during tensile deformation process.
Jinnai et al., Polymer Composites (2022)



W Summary



Creation of new material stream from forest resources to high-tech materialSswiti

cellulose nanofibers

Biomass power generation Plant cellulose fibers
A |

Conventional kraft pulping/bleaching tec

‘ Forest biomass resources

Carbon neutral

Unique technology for creation
of a sustainable society

ace-modification, compounding,
olding, casting, film-formation

Charged group-containing new cellulose fibers and
nanofibers

Isogai, Bergstrom, Curr. Opin. Green Sus. Chem. (2018)



Conclusions

M Diverse fibers, microfibrils, and nanocellulose materials can be prepared from the same TEMPO-
oxidized pulps.

MW TEMPO-CNCs are categorized as new nanocellulose materials different from conventional CNCs, and
available by spray-drying to be stored, delivered, and compounded with hydrophobic polymers.

M Because these TEMPO-oxidized cellulose fibers, nano-networks, nanofibers, and nanocrystals have
abundant sodium carboxylate groups on fibril surfaces, they can be used as new scaffolds for further
functionalization with simple ion-exchange from sodium to other metal and alkylammonium cations or

stable amidation.

™ Natural and synthetic rubber/CNF composites prepared by mixing once-dried CNFs with rubber
sheets or emulsions have high toughness, wet/dry strength, and low hysteresis loss, applicable first

to various rubber materials.



Future challenges

M Because the production quantities of CNFs are limited at present, the prices of CNFs are expensive,
even though the starting pulps are inexpensive, resulting in limited application products.

W Thus, the present CNF production does not contribute to low-carbon society.

M Replacement of presently used petroleum-based materials with CNFs is not easy in terms of cost,
performance, etc.

M Installation of new CNF production facilities in forest areas is not realistic, but the present pulp/paper
industry should produce CNFs based on the long-term accumulated technologies for efficiency, cost,

and environmental aspects

W Long-term evaluations of CNFs and CNF/polymer composites in terms of safety, durability, wet/dry
strength, toughness, hysteresis loss behavior are further required.
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