Preparation and characterization of plant cellulose nanofibers, and their applications as new bionanomaterials to functional and commodity materials

Tohoku Forum for Creativity - International Symposium on Designing Foods for the Future -

September 20th, 2024, Aobayama Commons, Tohoku University, Sendai, Japan

Akira ISOGAI

akira-isogai@g.ecc.u-tokyo.ac.jp

The University of Tokyo, Japan

Outline

- Background of biomass and nanocellulose utilization for creation of sustainable society and for circular economy
- **Fundamentals and application of TEMPO-mediated oxidation to cellulose and polysaccharides**
- **Characteristics of TEMPO-oxidized fibers, nanomaterials, and films**
- Application of TEMPO-CNFs
- **Summary**

Outline

- Background of biomass and nanocellulose utilization for creation of sustainable society and for circular economy
- **Fundamentals and application of TEMPO-mediated oxidation to cellulose and polysaccharides**
- Characteristics of TEMPO-oxidized fibers, nanomaterials, and films
- Application of TEMPO-CNFs
 - **Summary**

Creation of sustainable society based on renewable biomass utilization

Green chemistry, nanotechnology for biorefinery, bioeconomy

Hierarchical structures of crystalline cellulose microfibrils

Cellulose microfibrils are renewable and CO₂-accumulated bio-nanofibers most abundantly present in plants and most abundantly increased annually.

Production facilities of CNFs, Cellulose nanonetworks, and MFC in Japan

TEMPO-CNFs have been produced at the industrial level from 2013.

We have decided separation of roles; R&D in industry for applications and production technologies, while our lab for fundamental research and advising.

Categories of CNFs: Introduction of charged groups to pulp fibers in pretreatment

Raw material	Pretreatment	Chemicals	Production company	Charged groups of CNF surface	Safety
Agricultural wastes, etc.	None	-	-	Hemicellulose-COO [−] Lignin phenolic-O [−]	\odot
Non-wood pulp, etc.	None	-	Asahi Chemical, etc.	Hemicellulose-COO ⁻	\odot
Chemical wood pulp	None	-	Daio Paper, Mitsubishi Paper, Tokushu Tokai Paper, etc.	Residual hemicellulose-COO ⁻	\odot
	C6-TEMPO-oxidation	TEMPO/NaBr/NaClO/ Water	Nippon Paper DKS, ITT Leyonier, FPL, etc.	C6-carboxylate cellulose-COO ⁻	÷
	Phosphorylation	H ₂ (NH ₄)PO ₄ /urea/water	Oji Holdings	Phosphorylate ester cellulose-OP(=0)02 ²⁻	
	Phosphite esterification	H(NH ₄)PO ₃ /urea/water	Daio Paper	Phosphite ester cellulose-OP(=O)O [−]	÷
	Carboxymethyl etherification	CICH ₂ COONa/NaOH/water	Nippon Paper	Carboxymethylcellulose-OCH₂COO [−]	\odot
	Endo-type cellulase treatment	Endo-type cellulase/water	FFRI (Forest Agency)	Residual hemicelluloses-COO ⁻	\odot
	Xanthate esterification	CS ₂ /NaOH/water	Rengo	Xanthate ester cellulose-OCSS ⁻	÷
	Alkenylsuccinate esterification	ASA/KCO ₃ /NMP	Seiko PMC	Alkenylsuccinate ester cellulose- OCOCH ₂ CRHCOO ⁻	÷
	Sulfate esterification	Na sulfamate/urea/water	Maruzumi Paper	Sulfate ester cellulose-OSO ₃ ⁻	:
	C2,3-Dicarboxylation	NaCIO • 5H ₂ O/water	TOA Chemical	C2,3-dicarboxylate cellulose-(COO ⁻) ₂	

Differences between chemically pretreated CNFs and mechanically fibrillated CNFs

	CNFs prepared by chemical pretreatment and disintegration in water	Mechanically fibrillated CNFs	
Chemical pretreatment	TEMPO-mediated oxidation → C2/C3-oxidation, phosphorylation, sulfate esterification, carboxymethyl etherification, etc.	N/A	
Surface charge	CNF-COO ⁻ , CNF-O-PO ₃ ²⁻ , CNF-O-PO ₂ ⁻ , CNF-OSO ₃ ⁻ , CNF-OCS ₂ ⁻ , CNF-OCH ₂ COO ⁻	Hemicellulose-COO ⁻	
CNF content in water	< 2%	> 10%	
Width	3 nm or 3–100 nm, depending on disintegration conditions	10–200 nm	
Morphology	<image/>	<section-header></section-header>	

Outline

Background of biomass and nanocellulose utilization for creation of sustainable society and for circular economy

Fundamentals and application of TEMPO-mediated oxidation to cellulose and polysaccharides

Characteristics of TEMPO-oxidized fibers, nanomaterials, and films

Application of TEMPO-CNFs

Summary

TEMPO-catalyzed oxidation of polysaccharides

TEMPO-catalyzed oxidation of various polysaccharides, starting from 1996

Position-selective conversion mechanism of primary OH groups to carboxy groups by TEMPO-mediated oxidation

Isogai et al., Progress in Polymer Science (2018)

TEMPO-catalyzed oxidation process of plant, BC, tunicate, & algal cellulose fibers

Shinoda et al., Biomacromolecules (2012)

Conversion of wood cellulose fibers to TEMPO-oxidized cellulose nanofibers (TEMPO-CNFs)

Distribution of carboxyl groups in TEMPO-oxidized wood cellulose microfibril

Okita et al., Biomacromolecules (2010)

Hierarchical structure of wood cellulose

Cellulose microfibrils are the most abundantly present bio-based nanomaterials on Earth.

Isogai et al., Nanoscale (2011); Prog. Polym. Sci. (2018)

Mechanism to convert completely nano-dispersed CNFs from wood cellulose fibers

Tree

Osmotic effect and electrostatic repulsion efficiently work between surface-charged cellulose microfibrils in water.

TEMPO-mediated oxidation can be used to plant cellulose fibers for individualization to single microfibrils observable by TEM and AFM

All terrestrial plant fibers consist of crystalline cellulose microfibrils with homogeneous ~3-nm widths.

Outline

- Background of biomass and nanocellulose utilization for creation of sustainable society and for circular economy
- **Fundamentals and application of TEMPO-mediated oxidation to cellulose and polysaccharides**

Characteristics of TEMPO-oxidized fibers, nanomaterials, and films

- Application of TEMPO-CNFs
 - Summary

Diverse counterion exchanges of charged groups of CNFs

TEMPO-oxidized cellulose-COONa fibers, nanofibers \longrightarrow Cell-COOM or Cell-COONR₄ fibers, nanofibers

Switching of hydrophilicity/hydrophobicity

Gas barrier/gas separation Biodegradability/stability Electrical conductivity/electric insulation Thermal conductivity/thermal insulation

- Scaffolds for catalytic performance Super deodorant performance Metal organic frameworks
- Air filter performance

Resistance to high humidity or water, or increase in thermal stability

Highly strong, light weight, transparent, and thermally stable composites with individually nano-dispersed CNF elements in polymer matrices are possible to be prepared, according to high aspect ratios of charged CNFs.

Diverse nanocellulose can be prepared from the same TEMPO-oxidized cellulose fiber: Nano-networks, nanofibers, and nanocrystals

Zhou et al., Biomacromolecules (2018)

Oxygen-barrier properties were extremely improved by coating thin TEMPO-CNF film on PET film

Oxygen permeability decreases to 1/500000 by coating thin film of TEMPO-CNFs on PET film.

Positron-annihilation-lifetime spectroscopy shows that TEMPO-CNF film contains extremely small pores, d=0.47nm, without connections.

Quite low coefficient of thermal expansion of TEMPO-CNF films

Low coefficient of thermal expansion or thermal dimensional stability \rightarrow required for electronics, flexible display, etc.

Outline

- Background of biomass and nanocellulose utilization for creation of sustainable society and for circular economy
- **Fundamentals and application of TEMPO-mediated oxidation to cellulose and polysaccharides**
 - **Characteristics of TEMPO-oxidized fibers, nanomaterials, and films**

Application of TEMPO-CNFs

Summary

Ballpoint pen ink containing TEMPO-CNFs as dispersant for smooth writing

DORA-YAKI containing CNFs of University of Tokyo Brand

Regulation of postprandial blood metabolic variables by CNFs: bioactivity studies

Clear reduction of blood glucose, insulin, GIP concentrations after oral administration of glucose and triglyceride with TOCN GIP: glucose-dependent insulinotropic polypeptide

Shimotoyodome et al., Biomacromolecules (2011)

TEMPO-CNF/epoxy composites prepared by surface dual chemical modifications

Compounding a small amount of surface-modified TEMPO-CNFs with plastics improves the elastic modulus and linear thermal expansion coefficient.

Yamato et al., Cellulose (2021)

Copper-coordinated cellulose ion conductors for solid-state batteries: Cu/TEMPO-CNF complex material

Cu²⁺/TEMPO-CNF ion conductors have high Li⁺ conductivity, high transference number, and wide window of electrochemical stability , and are suitable for safe solid-state batteries.

Practical applications and developments of TEMPO-CNFs

- 2015: NPI Crecia started to sell CNF-containing super-deodorant diapers for adults to decrease helpers' burden
- 2015: Mitsubishi Pencil developed CNF-containing ballpoint pen ink dispersants for smooth writing
- 2017: Taiyo Holdings developed light-weight and thermally stable electronic boards containing CNFs (news release)
- 2019: Sumitomo Rubber started to sell longitudinal direction-oriented CNF-containing eco-tires for automobiles
- 2020: Kao developed chemically surface-modified CNF-containing composite materials for electronics and mobilities
- 2020: Toyota developed CNF-containing metallic silver spray coating for Lexus
- 2021: Tohoku University developed CNF-containing supercapacitors for automobiles
- 2021: Maryland University developed solid-Li butteries using CNF as efficient Li ion-channels
- 2022: Mizuno developed CNT/CNF composite golf shafts
- 2022: NPI Crecia developed CNF-containing antibacterial masks for medical applications

2022: Tohoku Seiren: TEMPO-CNF-treated permanent-press clothes

Positive Electrode

CNF

2#7

ふんわりフィット

気持ちいい

消息力

From petroleum-based rubber composites for mobilities to partly nanocelluose-containing elastomers for sustainable society

Long-term safety, high durability, dry/wet strength, toughness, and low hysteresis loss are required for applications.

Third step: Preparation of oven-dried TEMPO-CNF/resorcinol resin/rubber composites

- Tensile properties are improved by adding the oven-dried TEMPO-CNF/resorcinol resin.
- No TEMPO-CNF aggregates are formed in the composite.

Cross section of rubber composite containing 10 vol% TEMPO-CNF

Noguchi et al., Macromolecular Materials & Engineering (2021)

Real-time observation of microcrack growth in TEMPO-CNF/rubber composites, during tensile deformation

Structures and distributions of TEMPO-CNFs in rubber matrix influence the resultant deformation behavior during tensile deformation process.

Jinnai et al., Polymer Composites (2022)

Outline

- Background of biomass and nanocellulose utilization for creation of sustainable society and for circular economy
- **Fundamentals and application of TEMPO-mediated oxidation to cellulose and polysaccharides**
- Characteristics of TEMPO-oxidized fibers, nanomaterials, and films
- Application of TEMPO-CNFs
- **Summary**

Creation of new material stream from forest resources to high-tech materials with cellulose nanofibers

Conclusions

- Diverse fibers, microfibrils, and nanocellulose materials can be prepared from the same TEMPOoxidized pulps.
- TEMPO-CNCs are categorized as new nanocellulose materials different from conventional CNCs, and available by spray-drying to be stored, delivered, and compounded with hydrophobic polymers.
- Because these TEMPO-oxidized cellulose fibers, nano-networks, nanofibers, and nanocrystals have abundant sodium carboxylate groups on fibril surfaces, they can be used as new scaffolds for further functionalization with simple ion-exchange from sodium to other metal and alkylammonium cations or stable amidation.
- Natural and synthetic rubber/CNF composites prepared by mixing once-dried CNFs with rubber sheets or emulsions have high toughness, wet/dry strength, and low hysteresis loss, applicable first to various rubber materials.

Future challenges

- Because the production quantities of CNFs are limited at present, the prices of CNFs are expensive, even though the starting pulps are inexpensive, resulting in limited application products.
- Thus, the present CNF production does not contribute to low-carbon society.
- Replacement of presently used petroleum-based materials with CNFs is not easy in terms of cost, performance, etc.
- Installation of new CNF production facilities in forest areas is not realistic, but the present pulp/paper industry should produce CNFs based on the long-term accumulated technologies for efficiency, cost, and environmental aspects
- Long-term evaluations of CNFs and CNF/polymer composites in terms of safety, durability, wet/dry strength, toughness, hysteresis loss behavior are further required.

Acknowledgements

- Cellulose Chemistry Lab has started from 2020, belonging to the University President Division
- Leader/Management of nano-SIMS Analytical Division of the ARIM Project, the University of Tokyo (MEXT Project)

NanoSIMS

Lab member Akira Isogai 2 Postdocs, 1 Office manager 5 Ph.D-course students 4 Visiting researchers

Others

Project Professor, Shinshu University Advisers of AIST, Shizuoka Prefecture, etc. Collaborating with Prof. Hashida's Group of Tohoku University for NEDO project

SEC/MALLS for determination of molar mass distributions of polymers

TEMPO-oxidation system

Thank you for your kind attention