13:45-14:35, April 19 and 15:00-15:30, April 20

Poster Session

1. Chemistry (C)

P-1 High-throughput screening of thiosulfate sulfurtransferase (TST) selective inhibitors

<u>Eita Sasaki</u>¹, Takuto Kawate¹, Fan-Yan Wei², Hirotatsu Kojima³, Takayoshi Okabe³, Kenjiro Hanaoka¹

¹Graduate School of Pharmaceutical Sciences, Keio University, ²Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, ³Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo

P-2 Development of selective inhibitors for reactive sulfur species-producing enzyme, cystathionine β -synthase (CBS)

Ko Hirabayashi, Hisashi Ohno, Eita Sasaki, Kenjiro Hanaoka

Graduate School of Pharmaceutical Sciences, Keio University

P-3 Photocaged supersulfidation in cells using a thiol-specific bioconjugation reaction

<u>Shoki Okai</u>, Kazuya Matsuo, Tomonori Waku, Akio Kobori Kyoto Institute of Technology

P-4 Synthesis of unprotected cyclic peptide methylene dithioacetals by rhodium-catalyzed oxidation of methanol to formaldehyde

Masana Yazaki, Mieko Arisawa

Kyushu University

2. Biochemistry (BC)

P-5 Retinoic acid upregulates Nox4-induced redox signal-dependent endothelial cell migration

<u>Kei Miyano</u>¹, Sae Mishima², Momoe Itsumi¹, Kumiko Terada¹, Shuichiro Okamoto³, Akira Yamauchi³, Futoshi Kuribayashi³, Shin-Ichiro Nishimatsu¹

¹Department of Natural Sciences, Kawasaki Medical School, ²Fifth Year Medical Student in fiscal year of 2025, Kawasaki Medical School, ³Department of Biochemistry, Kawasaki Medical School

P-6 Effects of polysulfide-metabolizing enzymes on proliferation and metabolism in colorectal cancer

Qing Da Wang¹, Ting Lu², Yu Ping Xin¹, Huai Wei Liu¹, Lu Ying Xun³

¹State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China, ²School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, People's Republic of China., ³School of Molecular Biosciences, Washington State University, Pullman, WA, USA.

P-7 Fine-tuning of iron transportation regulated by persulfidation of transferrin and its regulation by selenoprotein P in plasma

<u>Takashi Toyama</u>¹, Miyuki Nara¹, Lisa Kageyama², Reona Tobita², Takakazu Nakabayashi², Yoshiro Saito¹

¹Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, ²Laboratory of Bio-Structural Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University

P-8 Involvement of Peroxiredoxin 6 in disturbance of selenium metabolism and ferroptosis sensitivity by methylmercury

Hayato Takashima¹, Takashi Toyama¹, Junya Ito², Eikan Mishima², Yoshiro Saito¹

¹Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, ²Helmholtz Munich

P-9 Stimulation of anaerobic growth of cyanobacteria by reduced sulfur compounds

Ami Ehara¹, Natsuki Kono¹, Kazuma Uesaka², Chisato Hosono³, Kazuki Terauchi³, Chihiro Azai¹

¹Faculty of Science and Engineering, Chuo University, ²Center for Gene Research, Nagoya University, ³Graduate School of Life Sciences, Ritsumeikan University

P-10 Fluxomic and metabolomic analyses reveal the origin of cysteine in disulfide reductase deficient mouse liver

<u>Eszter Petra Juranyi</u>^{1, 2}, Edward Schmidt^{3, 4}, Colin Miller³, Sydney Austad³, Tamas Ditroi¹, Zoe Seaford³, Reed Noyd³, Justin Prigge³, Gina Denicola⁵, Péter Nagy^{1, 4, 6}

¹Deparment of Molecular Immunology and Toxikology, National Institute of Oncology, ²Semmelweis University Doctoral College, Molecular Medicine Divison, Semmelweis University, ³Deparment of Microbiology & Cell Biology, Montana State University, ⁴Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology, University of Veteromary Medicine, ⁵Department of Metabolism & Phisiology, H. Lee Moffitt Cancer Center and Research Institute, ⁶Chemistry Coordinating Institute, University of Debrecen

P-11 Potential role of selenoprotein P in persulfide reduction

<u>Noemi Szanto</u>¹, Takashi Toyama², Eszter Petra Juranyi^{1, 3}, Katalin Erdelyi¹, Agnes Czikora¹, Tamas Ditroi¹, Yoshiro Saito², Péter Nagy^{1, 4, 5}

¹Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, ²Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, ³Semmelweis University Doctoral College, Molecular Medicine Division, Semmelweis University, ⁴Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology, University of Veterinary Medicine, ⁵Chemistry Coordinating Institute, University of Debrecen

P-12 Characterization of cysteine persulfide synthases in Arabidopsis thaliana

<u>Saki Otsuka</u>¹, Masaru Tsujii¹, Tomoaki Ida², Seiryo Ogata², Minkyung Jung², Takaaki Akaike², Yasuhiro Ishimaru¹, Nobuyuki Uozumi¹

¹Department of Biomolecular Engineering Graduate School of Engineering Tohoku University, ²Department of Environmental Medicine and Molecular Toxicology, Graduate School of Medicine, Tohoku Tohoku University

P-13 Enhanced de novo fatty acid synthesis through protein arginine methylation contributes to the acquisition of chemoresistance in triple-negative breast cancer

<u>Takehiro Yamamoto</u>^{1, 4}, Tetsu Hayashida², Yohei Masugi³, Mai Itoh⁴, Takako Hishiki¹, Chiyoko Nishime⁴, Naoharu Takano⁵, Makoto Suematsu^{1, 5}

¹Department of Biochemistry, School of Medicine, Keio University, ²Department of Surgery, School of Medicine, Keio University, ³Department of Pathology, School of Medicine, Keio University, ⁴Central Institute of Experimental Medicine, ⁵Department of Biochemistry, School of Medicine, Tokyo Medical University

P-14 Cystathionine β-synthase regulates calcium metabolism

<u>Takashi Nakamura</u>¹, Akiko Kubo², Takafumi Yoshioka³, Takehiro Yamamoto⁴, Tatsuya Yamamoto⁵, Isao Ishii⁶, Makoto Suematsu⁷

¹Oral Health Science Center, Tokyo Dental College, ²Division of Dermatology, Kobe University, ³Department of Ophthalmology, Asahikawa Medical University, ⁴Department of Biochemistry, Keio University School of Medicine, ⁵Bioorganic Research Institute, Suntory Foundation for Life Sciences, ⁶Department of Health Chemistry, Showa Pharmaceutical University, ⁷Central Institute for Experimental Medicine and Life Science

P-15 Structural rearrangement of *E. coli* TusE accompanied with persulfidation is required for secure sulfur-transfer in the biosynthesis of tRNA 2-thiouridine

Yuji Tokunaga¹, Kenjo Miyauchi², Yuriko Sakaguchi², Miki Senda³, Ayaka Hiroi^{3, 4}, Toshiya Senda³, Tsutomu Suzuki², Koh Takeuchi¹, Naoki Shigi⁵

¹Graduate School of Pharmaceutical Sciences, The University of Tokyo, ²Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, ³Structural Biology Research Center, Institute of Material Structure Science, High Energy Accelerator Research Organization (KEK), ⁴Department of Materials Science and Bioengineering, Nagaoka University of Technology, ⁵Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST)

P-16 Comprehensive suppression of PRL family molecules leads to intracellular Mg²⁺-deficiency and cell death mediated by NF-κB signaling

Koyuki Kawamura, Yosuke Funato, Hiroaki Miki Kyoto University

P-17 Novel persulfidation-induced high molecular weight oligomer of PRX1 and its chaperone-like activity

Ren Nakae, Yosuke Funato, Osamu Hashizume, Hiroaki Miki

Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University

P-18 Structure analysis of the Fe-S cluster biosynthesis protein complex SufBCD by cryo-electron microscopy

<u>Misato Tsuji</u>¹, Josei Uchida², Yumiko Motoyama², Takeshi Yokoyama¹, Kei Wada², Yoshikazu Tanaka¹

¹Graduate school of Life Sciences, Tohoku University, ²Faculty of Medicine, University of Miyazaki

P-19 Maintaining ER homeostasis through persulfidation protein

Hatsuho Kawauchi¹, Chika Tsutsumi¹, Kaiku Uegaki², Ryo Ushioda^{1,3}

¹Graduate school of Life sciences, Kyoto Sangyo University, ²Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, ³Institute of protein dynamics, Kyoto Sangyo University

P-20 Physiological functions of protein supersulfidation by cysteinyl-tRNA synthetase 1 (CARS1) in skeletal muscle

<u>Mei Omata</u>¹, Yusuke Kusano^{1, 2}, Shohei Murakami¹, Masanobu Morita³, Tomoaki Ida³, Keitaro Umezawa⁴, Tomoyoshi Soga⁵, Yukio Katori², Takaaki Akaike³, Hozumi Motohashi¹

¹Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, ²Department of Otolaryngology-Head & Neck Surgery, Tohoku University Graduate School of Medicine, ³Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, ⁴Tokyo Metropolitan Institute for Geriatrics and Gerontology, ⁵Institute for Advanced Biosciences, Keio University

S-Sulfhydrated human serum albumin suppresses cellular levels of reactive oxygen and nitrogen species

<u>Mei Tokunaga</u>¹, Mayumi Ikeda-Imafuku¹, Tatsuya Fukuta¹, Yu Ishima², Kazunori Kadota¹

¹Wakayama Medical University, ²Kyoto Pharmaceutical University

P-22 Bacterial cysteine-mediated inactivation of aminoglycoside antibiotics

<u>Katsuhiko Ono</u>¹, Takuro Niidome², Takaaki Akaike³, Tomohiro Sawa¹

¹Department of Microbiology, Faculty of Life Sciences, Kumamoto University, ²Faculty of Advanced Science and Technology, Kumamoto University, ³Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine

P-23 Identification of oxidative stress dependent mitochondrial tRNA modification

Raja Norazireen Raja Ahmad¹, Akiko Ogawa¹, Long-Teng Zhang¹, Kazuyasu Kanazawa¹, Tomohiro Sawa², Fan-Yan Wei¹

¹Department of Modomics Biology and Medicine, Institute of Development Aging and Cancer, Tohoku University, ²Department of Microbiology, Faculty of Life Sciences, Kumamoto University

P-24 Molecular mechanism of Mtu1-catalyzed sulfur modification in mitochondrial tRNAs

<u>Haruna Tani</u>¹, Raja Norazireen Raja Ahmad¹, Longteng Zhang¹, Keitaro Umezawa², Akiyuki Nishimura³, Motohiro Nishida^{3, 4}, Shungo Adachi⁵, Yuhei Araiso⁶, Fan-Yan Wei¹

¹IDAC, Tohoku University, ²Tokyo Metropolitan Institute of Gerontology, ³National Institute for Physiological Sciences, ⁴Graduate School of Pharmaceutical Sciences, Kyushu University, ⁵National Cancer Center, ⁶Graduate School of Medical Science, Kanazawa University

P-25 Characterization of the role of bacterial tRNA selenium modification in protein translation

<u>Kazuyasu Kanazawa</u>¹, Raja Norazireen Raja Ahmad¹, Haruna Tani¹, Shigeru Matsuda¹, Akiko Ogawa¹, Elias S. J. Arnér², Fan-Yan Wei¹

¹Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, ²Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet

P-26 Dynamic changes in NLRP3 supersulfidation drive inflammasome activation

<u>Tianli Zhang</u>¹, Akiyuki Nishimura², Hiroyasu Tsutsuki³, Kazuaki Monde³, Tetsuro Matsunaga¹, Motohiro Nishida^{2, 4}, Takaaki Akaike⁵, Tomohiro Sawa³

¹Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Japan, ²Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Japan, ³Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Japan, ⁴Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan, ⁵Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Japan

P-27 Identification of aminoacyl-tRNA synthetases as a new family of persulfide synthases

<u>Satoshi Shimozawa</u>¹, Tomoaki Ida², Minkyung Jung¹, Seiryo Ogata¹, Masanobu Morita¹, Tetsuro Matsunaga³, Tsuyoshi Takata¹, Hozumi Motohashi⁴, Takaaki Akaike¹

¹Dept. Environ. Med. Mol. Toxicol., Tohoku Univ. Grad. Sch. Med., Japan, ²Dept. Biol. Chem., Grad. Sch. Sci., Osaka Metro. Univ., Japan, ³Cent. Integr. Cont. Epidemiol. Mol. Pathophysiol. Infect. Dis., Akita Univ., Japan, ⁴Dept. Med. Biochem., Tohoku Univ. Grad. Sch. Med., Japan

P-28 Rhodanese functions as sulfurtransferase for *cyclo*-octasulfur (S₈) metabolism

Minkyung Jung¹, Tsuyoshi Takata¹, Yuka Unno², Akira Sato¹, Masanobu Morita¹, Tetsuro Matsunaga^{1,3,4}, Hozumi Motohashi⁴, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, ²Miyagi Prefectural Hospital Organization Miyagi Cancer Center, Japan, ³Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Japan, ⁴Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Japan

P-29 Sulfide quinone oxidoreductase (SQR)-mediated sulfur respiration in mitochondria by supersulfides in mammals

<u>Masanobu Morita</u>¹, Tetsuro Matsunaga^{1, 2}, Tomoaki Ida¹, Seiryo Ogata¹, Tsuyoshi Takata¹, Minkyung Jung¹, Uladzimir Barayeu^{1, 3}, Motohiro Nishida⁴, Hozumi Motohashi⁵, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, ²Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, ³Max-Planck-Institute for Polymer Research, ⁴Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, ⁵Department of Medical Biochemistry, Tohoku University Graduate School of Medicine

P-30 Regulatory mechanism of supersulfides production in endothelial cells

<u>Yuexuan Pan</u>¹, Tsuyoshi Takata¹, Minkyung Jung¹, Uladzimir Barayeu^{1, 2}, Seiryo Ogata¹, Tetsuro Matsunaga^{1, 3}, Jun Yoshitake¹, Masanobu Morita¹, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University, ²Max-Planck-Institute for Polymer Research, Germany, ³Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Japan

P-31 Longevity regulation via supersulfides in yeast

<u>Jun Yoshitake</u>¹, Akira Nishimura², Tetsuro Matsunaga^{1,3}, Tomoaki Ida¹, Seiryo Ogata¹, Minkyung Jung¹, Masanobu Morita¹, Tsuyoshi Takata¹, Hozumi Motohashi⁴, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, ²Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, ³Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Disease, Akita University, ⁴Department of Medical Biochemistry, Tohoku University Graduate School of Medicine

P-32 Supersulfide catalysis for nitric oxide and aldehyde metabolism mediated by alcohol dehydrogenase 5 (ADH5)

<u>Zizai Shen</u>¹, Masanobu Morita ¹, Shingo Kasamatsu², Seiryo Ogata¹, Minkyung Jung¹, Tetsuro Matsunaga^{1,3}, Uladzimir Barayeu^{1,4}, Akira Nishimura⁵, Morshedul Alam⁶, Kakeru Shimoda⁷, Motohiro Nishida⁷, Hozumi Motohashi⁶, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Japan, ²Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Japan, ³Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Japan, ⁴Max-Planck-Institute for Polymer Research, Germany, ⁵Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Japan, ⁶Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Japan, ⁷Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan

P-33 The role of sulfite oxidase in mitochondrial supersulfide metabolism

<u>Yingchi Xia</u>¹, Masanobu Morita¹, Seiryo Ogata¹, Tetsuro Matsunaga², Uladzimir Barayeu¹, Minkyung Jung¹, Naim Hassan¹, Tsuyoshi Takata¹, Hozumi Motohashi³, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, ²Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, ³Department of Medical Biochemistry, Tohoku University Graduate School of Medicine

P-34 NOX and NOS functioning as *cyclo*-octasulfur (S₈) synthases in supersulfide metabolism

<u>Tsuyoshi Takata</u>¹, Uladzimir Barayeu^{1, 2}, Tetsuro Matsunaga^{1, 3}, Minkyung Jung¹, Seiryo Ogata¹, Masanobu Morita¹, Yukihiro Tsuchiya⁴, Yasuo Watanabe⁴, Hozumi Motohashi⁵, Michito Yoshizawa⁶, Hideki Sumimoto⁷, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Japan, ²Max-Planck-Institute for Polymer Research, Germany, ³Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Japan, ⁴Department of Pharmacology, Showa Pharmaceutical University, Japan, ⁵Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Japan, ⁶Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Japan, ⁷Center for Advanced Medical Open Innovation, Kyushu University, Japan

P-35 Differential vulnerability of round spermatids to ferroptosis during spermatogenesis

<u>Leon Shen Yang Giesselink</u>, Jasper Germeraad, Takako Kikkawa, Noriko Osumi Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine

P-36 Vitamin E mitigates an aging-associated shift in XY chromosome ratio in murine germ cells by modulating ferroptosis

<u>Jasper Kevin Germeraad</u>, Leon Shen Yang Giesselink, Takako Kikkawa, Noriko Osumi Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan

P-37 Evaluation of physical and biological properties of tetrasulfide compounds with different terminal structures

<u>Yuka Hamazaki</u>, Yuki Kobayashi, Yu Ishima

Kyoto Pharmaceutical University

P-38 The analysis of UCP1 activation mechanism by lipidperoxidation in brown adipose

<u>Yuto Ishikawa</u>¹, Isshin Shiiba¹, Hidetaka Kozakura², Keitaro Umezawa³, Hideki Nishito⁴, Kenichi Yamada², Shigeru Yanagi¹

¹Gakushuin University , ²Kyushu University, ³Tokyo Metropolitan Institute for Geriatrics and Gerontology, ⁴University of Miyazaki

43

P-39 Regulatory mechanism for supplying heme-derived iron to mitochondria via ER-mitochondria contact sites

<u>Hijiri Oshio</u>¹, Isshin Shiiba¹, Naoki Ito¹, Fuya Yamaguchi¹, Naozumi Okada¹, Yuto Ishikawa¹, Shun Nagashima², Yuuta Fujikawa², Keitaro Umezawa³, Yuri Miura³, Misaki Shimizu⁴, Yoshiro Saito⁴, Tomoyuki Yamaguchi², Ryoko Inatome¹, Shigeru Yanagi¹

¹Faculty of Science, Gakushuin University, ²School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, ³Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, ⁴Graduate School of Pharmaceutical Sciences, Tohoku University

3. Molecular Genetics (MG)

P-40 Localization and function of sulfur transferase ExtH in sulfurreducing bacterium *Geobacter sulfurreducens*

<u>Kosuke Ogiso</u>¹, Daiki Fujita¹, Aoto Kudo¹, Anna Ochi¹, Masao Inoue², Riku Aono¹, Hisaaki Mihara¹

¹Coll. Life Sci., Ritsumeikan Univ., ²R-GIRO, Ritsumeikan Univ.

P-41 Heme-binding of SqrR and YgaV confers responsiveness to hydrogen sulfide under aerobic conditions with distinct coordination modes depending on heme iron redox state

Ryoma Iwata, Shinji Masuda

Institute of Science Tokyo

P-42 Mitochondrial activity is a critical determinant of lineage choice of megakaryocyte-erythroid progenitors

<u>Eunkyu Sung</u>¹, Shohei Murakami¹, Tomoaki Ida², Masanobu Morita³, Takaaki Akaike³, Hozumi Motohashi^{1, 4}

¹Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, ²Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, ³Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, ⁴Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University

P-43 Inhibition of Drp1-Filamin interaction suppresses accumulation of lipid droplet and improves fatty liver via the increase of contact between mitochondria and lipid droplet

<u>Kohei Ariyoshi</u>¹, Kazuhiro Nishiyama², Yuri Kato¹, Xinya Mi¹, Tomoya Ito¹, Akiyuki Nishimura³, Motohiro Nishida^{1,3}

¹Department of physiology, Graduate School of Pharmaceutical Sciences, Kyushu university, ²Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, ³National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS)

P-44 A mechanism of the ER homeostasis disruption by reductive stress

<u>Yuna Baba</u>¹, Shota Wada¹, Hiroaki Takayama³, Takashi Toyama², Toshinari Takamura³, Yoshiro Saito², Ryo Ushioda^{1, 4}

¹Graduate school of Life sciences, Kyoto Sangyo University, ²Graduate School of Pharmaceutical Sciences, Tohoku University, ³Graduate School of Medical Sciences, Kanazawa University, ⁴Institute of protein dynamics, Kyoto Sangyo University

P-45 CTH is essential for zebrafish growth, whereas CBS is dispensable

<u>LI Quan</u>¹, Guilin Dong¹, Yuta Sato¹, Makoto Kashima², Makoto Kobayashi¹ ¹University of Tsukuba, ²Toho University

P-46 Decoding renal urate transport system at the single-cell and transportsome levels

<u>Yoshihiko Sakaguchi</u>^{1, 2}, Pattama Wiriyasermkul^{2, 3}, Riko Sakaguchi^{2, 4}, Masaki Miyasaka^{2, 4}, Shushi Nagamori^{2, 4}

¹PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, ²Center for SI Medical Research, The Jikei University School of Medicine, ³Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, ⁴Department of Laboratory Medicine, The Jikei University School of Medicine

P-47 Approaches to elucidate stop codon readthrough phenomenon: Functional and structural insight

<u>Koki Nomura</u>¹, Yusuke Ohkubo¹, Arisa Suto², Takashi Matsui², Yoshio Kodera², Takeshi Yokoyama¹, Yoshikazu Tanaka¹

¹Graduate School of Life Science, Tohoku University, Miyagi, Japan, ²Kitasato University, School of Science, Kanagawa, Japan

P-48 Ribosome profiling of stalled ribosome sensor *Gcn1* knockout mouse embryonic fibroblasts

<u>Shuya Kasai</u>¹, Yuichi Shichino², Peixun Han², Yota Tatara¹, Junsei Mimura¹, Shintaro Iwasaki^{2, 3}, Ken Itoh¹

¹Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, ²RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, ³Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo

4. Diseases & Clinical Medicine (DC)

P-49 Supersulfide production via CARS2 protected ischemic heart by maintaining mitochondrial function

<u>Xiaokang Tang^{1, 2}</u>, Kakeru Shimoda^{1, 3}, Akiyuki Nishimura^{1, 2}, Masanobu Morita⁴, Takaaki Akaike⁴, Motohiro Nishida^{1, 2, 3}

¹National Institute of Natural Sciences, National Institute for Physiological Sciences, Department of Cardiovascular Signaling, ²The Graduate University for Advanced Studies, School of Life Science, Department of Physiological Sciences, ³Kyushu University, Graduate School of Pharmaceutical Sciences, Department of Physiology, ⁴Tohoku University, Graduate School of Medicine, Department of Environmental Medicine and Molecular Toxicology

P-50 Zn²⁺-dependent maintenance of redox homeostasis by TRPC6 activation underlies prevention of cardiac fibrosis

<u>Chenlin Su</u>¹, Xinya Mi¹, Tomoya Ito¹, Yuri Kato¹, Akiyuki Nishimura^{2, 3, 4}, Ryu Nagata⁵, Yasuo Mori⁶, Motohiro Nishida^{1, 2, 3, 4}

¹Graduate School of Pharmaceutical Sciences, Kyushu University, ²National Institute for Physiological Science (NIPS), National Institutes of Natural Sciences (NINS), ³Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, ⁴SOKENDAI (The Graduate University for Advanced Studies), ⁵Graduate School of Pharmaceutical Sciences, Osaka University, ⁶Graduate School of Engineering, Kyoto University

P-51 Involvement of NADPH oxidase 2-interacting TRPC channels in mouse heart failure with preserved ejection fraction

<u>Kentaro Mizushima</u>¹, Yuri Kato¹, Tomoya Ito¹, Xinya Mi¹, Akiyuki Nishimura², Motohiro Nishida^{1, 2}

¹ Graduate School of Pharmaceutical Sciences, Kyushu University, ²National Institute for Physiological Sciences (NIPS)

P-52 Differences in protein supersulfidation in hearts with systolic and diastolic dysfunction

<u>Yuya Nakamura</u>¹, Koki Tachibana¹, Xiaokang Tang^{2, 3}, Liuchenzi Zhou^{2, 3}, Kentaro Mizushima¹, Yuri Kato¹, Tomoya Ito¹, Akiyuki Nishimura^{2, 3}, Motohiro Nishida^{1, 2, 3}

¹Department of Physiology, Graduate School of Pharmaceutical Science, Kyushu University, ²Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences and Exploratory Research Center of Life and Living System, National Institute of Natural Sciences, ³Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI)

P-53 Cardiac cell remodeling: The influence of supersulfide catabolism

<u>Liuchenzi Zhou</u>^{1, 2}, Akiyuki Nishimura^{1, 2}, Xiangkang Tang^{1, 2}, Yuri Kato³, Xinya Mi³, Motohiro Nishida^{1, 2, 3}

¹Department of cardiocirculatory signaling, National Institute of Physiological Sciences, ²The Graduate University for Advanced Studies, ³Kyushu University

P-54 Inorganic sulfide prevents osimertinib-induced human cardiotoxicity

<u>Yuga Nakaguma</u>¹, Moe Kondo^{1,2}, Yuya Nakamura¹, Yuri Kato¹, Tomoya Ito¹, Akiyuki Nishimura³, Motohiro Nishida^{1,3}

¹Graduated school of Pharmaceutical Sciences, Kyushu University, ²Graduate School of Medical Sciences, Kyushu University, ³National Institute for Physiological Sciences (NIPS) and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences

P-55 Amelioration of diabetes by curcumin derivatives through inhibition of the synthesis of selenoprotein P, an exacerbation factor of diabetes

<u>Yinuo Wang</u>¹, Takashi Toyama¹, Hiroyuki Yamakoshi², Yoshiharu Iwabuchi², Yoshiro Saito¹

¹Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, ²Laboratory of Synthetic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University

P-56 Promotion of lead-induced cytotoxicity via ER stress in differentiating neural cells and protective effects of selenium and SELENOK

<u>Satoru Shiina</u>, Takayuki Kaneko, Takashi Toyama, Yoshiro Saito

Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University

P-57 Inhibition of Nrf2 in Nrf2-upregulated glioblastoma increases ferroptosis resistance- Role of heme oxygenase 1

Stephanie Ka Kiu Siu, Takashi Toyama, Yoshiro Saito

Tohoku University Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Biology and Metabolism

P-58 Host redox regulation in the pathogenicity of SubAB toxin from Shiga toxin-producing *Escherichia coli*

Hiroyasu Tsutsuki¹, Tianli Zhang², Kinnosuke Yahiro³, Takaaki Akaike⁴, Tomohiro Sawa¹

¹Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, ²Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, ³Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, ⁴Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine

P-59 Protective roles of supersulfides on acetaminophen induced liver injury

<u>Chunyu Guo</u>¹, Hiroyasu Tsutsuki¹, Touya Toyomoto¹, Katsuhiko Ono¹, Yukio Fujiwara¹, Stephen Lindahl², Ming Xian², Tomohiro Sawa¹

¹Kumamoto University, ²Brown University

P-60 Anti-inflammatory effects of supersulfides on influenza A virus infection in mice

<u>Foysal Hossen</u>¹, Hiroyasu Tsutsuki¹, Takahisa Kouwaki ¹, Tianli Zhang³, Yukio Fujiwara¹, Hiroyuki Oshiumi¹, Takaaki Akaike², Tomohiro Sawa¹

¹Kumamoto University, ²Tohoku University, ³Akita University

P-61 Selenoprotein P suppression by NRF2 activation drives selenoprotein trade-off and ferroptosis resistance in hepatocellular carcinoma

<u>Kotoko Arisawa</u>, Tetta Hiranuma, Moeka Natori, Takashi Toyama, Yoshiro Saito Graduate School of Pharmaceutical Sciences, Tohoku University

P-62 Microbial supersulfides contribute to host protection against oxidative stress

Jun Uchiyama^{1, 2}, Masahiro Akiyama¹

¹Showa University, Clinical Research Institute for Clinical Pharmacology and Therapeutics, ²Graduate School of Pharmaceutical Sciences, Keio University

P-63 Vitamin B6 mitigates ferroptosis by promoting supersulfide synthesis in bleomycin-induced pulmonary fibrosis

<u>Hiroki Sekine</u>¹, Chikara Sakai^{1, 2}, Keito Okazaki^{1, 3}, Eunkyu Sung¹, Zinying Liu¹, Chon Kit Lio¹, Yusuke Uchibori^{1, 4}, Shohei Murakami¹, Tatsuaki Watanabe², Yoshinori Okada², Hozumi Motohashi^{1, 3}

¹Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, ²Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, ³Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, ⁴Department of Hematology, Tohoku University Graduate School of Medicine

P-64 Cisplatin-induced ferroptosis is preferentially induced in proximal tubule \$3 segment-derived immortalized cells

Hiroki Taguchi^{1, 2}, Hitomi Fujishiro², Daigo Sumi²

¹Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellow, Graduate School of Pharmaceutical Sciences, Tohoku University, ²Faculty of Pharmaceutical Sciences, Tokushima Bunri University

P-65 Synthesis and evaluation of supersulfides-containing ionic liquids for dermatological diseases

<u>Haruka Mikata</u>, Mayumi Ikeda-Imafuku, Tatsuya Fukuta, Kazunori Kadota

Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University

P-66 Supersulfides contribute to joint homeostasis and bone regeneration

Miki Maemura^{1,2}, Masanobu Morita³, Seiryo Ogata³, Yoichi Miyamoto⁴, Tomoaki Ida³, Kazuhiro Shibusaka^{2,5}, Soichiro Negishi^{1,2}, Masahiro Hosonuma⁶, Taku Saito⁷, Jun Yoshitake³, Tsuyoshi Takata³, Tetsuro Matsunaga^{3,8}, Eikan Mishima⁹, Uladzimir Barayeu¹⁰, Takaaki Akaike³, Fumiko Yano¹¹

¹Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa Medical University, Japan, ²Department of Biochemistry, Graduate School of Dentistry, Showa Medical University, Japan, ³Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Japan, ⁴Faculty of Arts and Sciences at Fujiyoshida, Showa Medical University, Japan, ⁵Department of Orthodontics, Graduate School of Dentistry, Showa Medical University, Japan, ⁶Department of Pharmacology, Graduate School of Medicine, Showa Medical University, Japan, ⁷Sensory & Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Japan, ⁸Centre for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Japan, ⁹Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany, ¹⁰Max-Planck-Institute for Polymer Research, Mainz, Germany, ¹¹Showa Medical University Research Administration Center, Showa Medical University, Japan

P-67 Supersulfides protect against SARS-CoV-2 infection via suppression of the viral thiol proteases

<u>Jia Yao</u>¹, Tetsuro Matsunaga^{1,2}, Masanobu Morita¹, Seiryo Ogata¹, Minkyung Jung¹, Uladzimir Barayeu¹, Tsuyoshi Takata¹, Hozumi Motohashi³, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, ²Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, ³Department of Medical Biochemistry, Tohoku University Graduate School of Medicine

P-68 Breath omics developed for a hamster model of SARS-CoV-2 infection

<u>Yujun Tan</u>¹, Seiryo Ogata¹, Tetsuro Matsunaga^{1, 2}, Masanobu Morita¹, Fan-Yan Wei³, Hozumi Motohashi⁴, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, ²Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, ³Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, ⁴Department of Medical Biochemistry, Tohoku University Graduate School of Medicine

P-69 Supersulfide metabolome of exhaled breath condensate for diagnostic biomarkers of esophageal cancer

<u>Seji Asamitsu</u>^{1,2}, Yohei Ozawa¹, Seiryo Ogata², Hiroshi Okamoto¹, Jun Yoshitake², Tetsuro Matsunaga³, Yusuke Taniyama¹, Chiaki Sato¹, Hirotaka Ishida¹, Takaaki Abe⁴, Takashi Kamei¹, Takaaki Akaike²

¹Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan, ²Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan, ³Center for Integrated Control, Epidemiology and Molecular Pathophysiology of infectious Diseases, Akita University, Japan, ⁴Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan

5. Methodology (M)

P-70 Robust determination of coenzyme Q10 redox status using two isotope-labeled internal standards

Yun Pyo Kang¹, Tae Ha Kim¹, Chi Thi Ngoc Nguyen¹, Seon Min Kim¹, Eun-Woo Lee^{2, 3, 4}, Sung Won Kwon¹

¹College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea, ²Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea, ³Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea, ⁴School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea

P-71 High sensitive and high signal-to-noise ratio Raman measurements of biological macromolecules using liquid-liquid phase separation and application to the detection of supersulfide structures

<u>Lisa Kageyama</u>, Reona Tobita, Shinya Tahara, Shinji Kajimoto, Takakazu Nakabayashi

Tohoku University

P-72 Raman imaging reveals the regulatory mechanism of ferroptosis by the application of external lipids

Ryota Dobashi, Masato Machida, Shinji Kajimoto, Takakazu Nakabayashi Tohoku University

P-73 Development of a new detection method for supersulfide molecules using Raman scattering

<u>Keisuke Koga</u>¹, Hirotsugu Hiramatsu², Shinji Kajimoto¹, Takakazu Nakabayashi¹ ¹Tohoku University, ²National Yang Ming Chiao Tung University

P-74 Detection of protein polysulfidation using a β-(4-hydroxyphenyl)ethyl iodoacetamide derived biotin tag HPB

Yu Ping Xin¹, Xin Yue Zhang¹, Qing Da Wang¹, Long Yang Dian¹, Yong Zhen Xia¹, Lu Ying Xun², Huai Wei Liu¹

¹State key laboratory of Microbial technology, Shandong university, Qingdao, People's Republic of China, ²School of Molecular Biosciences, Washington State University, Pullman, WA, USA

P-75 Development of new chemical tools for comprehensive analysis of supersulfidated biomolecules and proteins

<u>Keitaro Umezawa</u>¹, Hiroki Tsumoto¹, Kyojiro Kawakami¹, Kamrun Naher¹, Akiyuki Nishimura^{2, 3, 4}, Motohiro Nishida^{2, 3, 4, 5}, Yu Ishima⁶, Yasuteru Urano^{7, 8}, Yuri Miura¹

¹Tokyo Metropolitan Institute for Geriatrics and Gerontology, ²National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), ³Exploratory Research Center on Life and Living Systems, NINS, ⁴SOKENDAI (The Graduate University for Advanced Studies), ⁵Graduate School of Pharmaceutical Sciences, Kyushu University, ⁶Laboratory of Biopharmaceutics, Kyoto Pharmaceutical University, ⁷Graduate School of Medicine, The University of Tokyo, ⁸Graduate School of Pharmaceutical Sciences, The University of Tokyo

P-76 Quantitative redox proteomics of human muscle response to exercise identified p62 oxidation as necessary in contraction mediated adaptations

<u>Jonathan Joseph Petrocelli</u>^{1, 2}, Yu Lei^{1, 2}, Anita Reddy^{1, 2}, Nils Burger^{1, 2}, Christian Voldstedlund³, Haopeng Xiao^{1, 2}, Thomas Jensen³, Erik Richter³, Edward Chouchani^{1, 2}

¹Department of Cancer Biology, Dana-Farber Cancer Institute, ²Department of Cell Biology, Harvard Medical School, ³Department of Nutrition, Exercise and Sports, University of Copenhagen

P-77 Development of nucleic acid aptamers that bind conformation-restricted analogues of amyloid supersulfide

Van Thi Hong Nguyen¹, Gal Bitan², <u>Kazuma Murakami</u>¹

¹Graduate School of Agriculture, Kyoto University, ²Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California Los Angeles

P-78 Development of a mitochondria-targeting fluorescence probe for detecting hydrogen peroxide based on steric repulsion-induced twisted intramolecular charge transfer

<u>Mizuki Sugimoto</u>, Eita Sasaki, Hisashi Ohno, Kenjiro Hanaoka Keio University

P-79 Fluorescence imaging of newly synthesized proteins and their degradation dynamics in living cells

<u>Shun Sumitani</u>, Eita Sasaki, Hisashi Ohno, Kenjiro Hanaoka Graduate School of Pharmaceutical Sciences, Keio University

P-80 Development of a fluorescence probe for singlet oxygen based on the p-TICT mechanism

Tatsuya Ogata, Hisashi Ohno, Kenjiro Hanaoka

Graduate School of Pharmaceutical Sciences, Keio University

P-81 Quantitative profiling of supersulfides in foods: Advances in sulfur-containing compounds analysis for nutritional and health applications

<u>Hideshi Ihara</u>, Shingo Kasamatsu, Ayaka Kinno, Somei Komae, Chiharu Miura, Kirara Tanaka, Haruka Nitta, Wakana Nagamura

Dept. of Biol. Chem., Grad. Sch. of Sci., Osaka Metropolitan Univ.

P-82 Supersulfide proteome analysis for the detection of protein modification

<u>Seiryo Ogata</u>¹, Tomoaki Ida¹, Tsuyoshi Takata¹, Jun Yoshitake¹, Tetsuro Matsunaga^{1, 2}, Minkyung Jung¹, Masanobu Morita¹, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, ²Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University

P-83 Breath supersulfide analysis for disease profiling

<u>Kazuki Fusegawa^{1, 2}</u>, Seiryo Ogata¹, Seji Asamitsu^{1, 2}, Masanobu Morita¹, Tetsuro Matsunaga¹, Yohei Ozawa², Takashi Kamei², Fan-Yan Wei³, Hozumi Motohashi⁴, Takaaki Akaike¹

¹Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan, ²Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan, ³Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan, ⁴Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan

P-84 Mercapto-NSAIDs generate a non-steroidal antiinflammatory drug (NSAID) and hydrogen sulfide

Simran Manoj Gupta, Pratiksha Sambhaji Mohite, Harinath Chakrapani

Indian Institute of Science Education and Research, Pune